HOPLoP: multi-hop link prediction over knowledge graph embeddings

被引:7
|
作者
Ranganathan, Varun [1 ]
Barbosa, Denilson [1 ]
机构
[1] Univ Alberta, Dept Comp Sci, Edmonton, AB, Canada
来源
WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS | 2022年 / 25卷 / 02期
关键词
Link Prediction; Knowledge Graph Embeddings; Multi-hop reasoning;
D O I
10.1007/s11280-021-00972-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Large-scale Knowledge Graphs (KGs) support applications such as Web search and personal assistants and provide training data for numerous Natural Language Processing tasks. Nevertheless, building KGs with high accuracy and domain coverage remains difficult, and neither manual nor automatic efforts are up to par. Link Prediction (LP) is one of many tasks aimed at addressing this problem. Its goal is to find missing links between entities in the KG based on structural by exploiting regularities in the graph structure. Recent years have seen two approaches emerge: using KG embeddings, and modelling complex relations by exploiting correlations between individual links and longer paths connecting the same pair of entities. For the latter, state-of-the-art methods traverse the KG itself and are hampered both by incompleteness and skewed degree distributions found in most KGs, resulting in some entities being overly represented in the training set leading to poor generalization. We present HOPLoP: an efficient and effective multi-hop LP meta method that performs the equivalent to path traversals on the KG embedding space instead of the KG itself, marrying both ideas. We show how to train and tune our method with different underlying KG embeddings, and report on experiments on many benchmarks, showing both that HOPLoP improves each LP method on its own and that it consistently outperforms the previous state-of-the-art by a good margin. Finally, we describe a way to interpret paths generated by HOPLoP when used with TransE.
引用
收藏
页码:1037 / 1065
页数:29
相关论文
共 50 条
  • [1] HOPLoP: multi-hop link prediction over knowledge graph embeddings
    Varun Ranganathan
    Denilson Barbosa
    World Wide Web, 2022, 25 : 1037 - 1065
  • [2] A Survey on Knowledge Graph Embeddings for Link Prediction
    Wang, Meihong
    Qiu, Linling
    Wang, Xiaoli
    SYMMETRY-BASEL, 2021, 13 (03):
  • [3] Learning Knowledge Graph Embeddings by Multi-Attention Mechanism for Link Prediction
    Wang, Meihong
    Li, Han
    Qiu, Linling
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT I, 2022, 13155 : 33 - 49
  • [4] Semantic-aware graph convolution network on multi-hop paths for link prediction
    Peng F.
    Chen S.
    Qi D.
    Yu Y.
    Tong D.
    High Technology Letters, 2023, 29 (03) : 269 - 278
  • [5] CogKR: Cognitive Graph for Multi-Hop Knowledge Reasoning
    Du, Zhengxiao
    Zhou, Chang
    Yao, Jiangchao
    Tu, Teng
    Cheng, Letian
    Yang, Hongxia
    Zhou, Jingren
    Tang, Jie
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (02) : 1283 - 1295
  • [6] Explaining Link Prediction Systems based on Knowledge Graph Embeddings
    Rossi, Andrea
    Firmani, Donatella
    Merialdo, Paolo
    Teofili, Tommaso
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA (SIGMOD '22), 2022, : 2062 - 2075
  • [7] Attention-based Multi-hop Reasoning for Knowledge Graph
    Wang, Zikang
    Li, Linjing
    Zeng, Daniel Dajun
    Chen, Yue
    2018 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SECURITY INFORMATICS (ISI), 2018, : 211 - 213
  • [8] Dual view graph transformer networks for multi-hop knowledge graph reasoning
    Sun, Congcong
    Chen, Jianrui
    Shao, Zhongshi
    Huang, Junjie
    NEURAL NETWORKS, 2025, 186
  • [9] Hierarchical Knowledge-Enhancement Framework for multi-hop knowledge graph reasoning
    Xie, Shaorong
    Liu, Ruishen
    Wang, Xinzhi
    Luo, Xiangfeng
    Sugumaran, Vijayan
    Yu, Hang
    NEUROCOMPUTING, 2024, 588
  • [10] SRGCN: Graph-based multi-hop reasoning on knowledge graphs
    Wang, Zikang
    Li, Linjing
    Zeng, Daniel
    NEUROCOMPUTING, 2021, 454 : 280 - 290