Extension theorems related to a fluid-structure interaction problem

被引:0
|
作者
Halanay, Andrei [1 ]
Murea, Cornel Marius [2 ]
Tiba, Dan [3 ,4 ]
机构
[1] Univ Politehn Bucuresti, Dept Math 1, Bucharest, Romania
[2] Univ Haute Alsace, Lab Math Informat & Applicat, Mulhouse, France
[3] Romanian Acad, Inst Math, Bucharest, Romania
[4] Acad Romanian Scientists, Bucharest, Romania
来源
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE | 2018年 / 61卷 / 04期
关键词
fluid-structure interaction; fictituous domain; UNSTEADY INTERACTION; WEAK SOLUTIONS; VISCOUS-FLUID; STOKES FLUID; EXISTENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to prove the existence of an approximate weak solution for a steady fluid-structure interaction problem. A fictitious domain approach with penalization is used. One of the main ingredients is an extension theorem for domains with Lipschitz boundaries. The fluid and structure domains are not necessarily double connected and the structure is not completely surrounded by the fluid. These assumptions are more realistic for some engineering and medical applications.
引用
收藏
页码:417 / 437
页数:21
相关论文
共 50 条
  • [41] A SECOND-ORDER IN TIME APPROXIMATION OF FLUID-STRUCTURE INTERACTION PROBLEM
    Oyekole, Oyekola
    Trenchea, Catalin
    Bukac, Martina
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (01) : 590 - 613
  • [42] A monolithic mixed finite element method for a fluid-structure interaction problem
    Bean, Maranda
    Yi, Son-Young
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 363
  • [43] ANALYSIS OF A FLUID-STRUCTURE INTERACTION PROBLEM RECAST IN AN OPTIMAL CONTROL SETTING
    Kuberry, P.
    Lee, H.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (03) : 1464 - 1487
  • [44] A Nonconforming Finite Element Method for an Acoustic Fluid-Structure Interaction Problem
    Brenner, Susanne C.
    Cesmelioglu, Aycil
    Cui, Jintao
    Sung, Li-Yeng
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2018, 18 (03) : 383 - 406
  • [45] Engineering analysis method in fluid-structure interaction problem of hemispherical parachute
    School of Aeronautic Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
    Beijing Hangkong Hangtian Daxue Xuebao, 2009, 1 (96-99):
  • [46] Algorithm for solving fluid-structure interaction problem on a global moving mesh
    Sy, Soyibou
    Murea, Cornel Marius
    COUPLED SYSTEMS MECHANICS, 2012, 1 (01): : 99 - 113
  • [47] EXISTENCE OF STRONG SOLUTIONS TO A FLUID-STRUCTURE SYSTEM
    Lequeurre, Julien
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (01) : 389 - 410
  • [48] Existence of a weak solution to a regularized moving boundary fluid-structure interaction problem with poroelastic media
    Kuan, Jeffrey
    Canic, Suncica
    Muha, Boris
    COMPTES RENDUS MECANIQUE, 2023, 351
  • [49] Analysis and finite element discretization for optimal control of a linear fluid-structure interaction problem with delay
    Peralta, Gilbert
    Kunisch, Karl
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (01) : 140 - 206
  • [50] Existence of a weak solution to a regularized moving boundary fluid-structure interaction problem with poroelastic media
    Kuan, Jeffrey
    Canic, Suncica
    Muha, Boris
    COMPTES RENDUS MECANIQUE, 2023, 351