Extension theorems related to a fluid-structure interaction problem

被引:0
|
作者
Halanay, Andrei [1 ]
Murea, Cornel Marius [2 ]
Tiba, Dan [3 ,4 ]
机构
[1] Univ Politehn Bucuresti, Dept Math 1, Bucharest, Romania
[2] Univ Haute Alsace, Lab Math Informat & Applicat, Mulhouse, France
[3] Romanian Acad, Inst Math, Bucharest, Romania
[4] Acad Romanian Scientists, Bucharest, Romania
来源
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE | 2018年 / 61卷 / 04期
关键词
fluid-structure interaction; fictituous domain; UNSTEADY INTERACTION; WEAK SOLUTIONS; VISCOUS-FLUID; STOKES FLUID; EXISTENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to prove the existence of an approximate weak solution for a steady fluid-structure interaction problem. A fictitious domain approach with penalization is used. One of the main ingredients is an extension theorem for domains with Lipschitz boundaries. The fluid and structure domains are not necessarily double connected and the structure is not completely surrounded by the fluid. These assumptions are more realistic for some engineering and medical applications.
引用
收藏
页码:417 / 437
页数:21
相关论文
共 50 条
  • [31] FEEDBACK BOUNDARY STABILIZATION OF 2D FLUID-STRUCTURE INTERACTION SYSTEMS
    Badra, Mehdi
    Takahashi, Takeo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (05) : 2315 - 2373
  • [32] Continuous Dependence on Initial Data in Fluid-Structure Motions
    Guidoboni, Giovanna
    Guidorzi, Marcello
    Padula, Mariarosaria
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2012, 14 (01) : 1 - 32
  • [33] Homogenization and long time asymptotic of a fluid-structure interaction problem
    Allaire, Gregoire
    Ferriero, Alessandro
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2008, 9 (02): : 199 - 220
  • [34] A NEW NUMERICAL SCHEME FOR A LINEAR FLUID-STRUCTURE INTERACTION PROBLEM
    Gonzalez, Maria
    Selgas, Virginia
    COMPUTATIONAL METHODS FOR COUPLED PROBLEMS IN SCIENCE AND ENGINEERING IV, 2011, : 792 - 801
  • [35] On the order and accuracy of operator splitting for a fluid-structure interaction problem
    Ingebrigtsen, L
    Nilssen, TK
    Langtangen, HP
    Tveito, A
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2003, 4 (03) : 209 - 218
  • [36] An implicit full Eulerian method for the fluid-structure interaction problem
    Ii, S.
    Sugiyama, K.
    Takeuchi, S.
    Takagi, S.
    Matsumoto, Y.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (1-3) : 150 - 165
  • [37] Development of Coupled Fluid-Structure Interaction Code for Explosion Problem
    Saburi, Tei
    Kubota, Shiro
    Wada, Yuji
    Yoshida, Masatake
    EXPLOSION, SHOCK WAVE AND HIGH-ENERGY REACTION PHENOMENA II, 2014, 767 : 92 - +
  • [38] Strong stability for a fluid-structure interaction model
    Grobbelaar-Van Dalsen, Marie
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (11) : 1452 - 1466
  • [39] REVISITING THE JONES EIGENPROBLEM IN FLUID-STRUCTURE INTERACTION
    Dominguez, Sebastian
    Nigam, Nilima A.
    Sun, Jiguang
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2019, 79 (06) : 2385 - 2408
  • [40] On a nonlinear fluid-structure interaction problem defined on a domain depending on time
    Flori, F
    Orenga, P
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 38 (05) : 549 - 569