Extension theorems related to a fluid-structure interaction problem

被引:0
|
作者
Halanay, Andrei [1 ]
Murea, Cornel Marius [2 ]
Tiba, Dan [3 ,4 ]
机构
[1] Univ Politehn Bucuresti, Dept Math 1, Bucharest, Romania
[2] Univ Haute Alsace, Lab Math Informat & Applicat, Mulhouse, France
[3] Romanian Acad, Inst Math, Bucharest, Romania
[4] Acad Romanian Scientists, Bucharest, Romania
来源
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE | 2018年 / 61卷 / 04期
关键词
fluid-structure interaction; fictituous domain; UNSTEADY INTERACTION; WEAK SOLUTIONS; VISCOUS-FLUID; STOKES FLUID; EXISTENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to prove the existence of an approximate weak solution for a steady fluid-structure interaction problem. A fictitious domain approach with penalization is used. One of the main ingredients is an extension theorem for domains with Lipschitz boundaries. The fluid and structure domains are not necessarily double connected and the structure is not completely surrounded by the fluid. These assumptions are more realistic for some engineering and medical applications.
引用
收藏
页码:417 / 437
页数:21
相关论文
共 50 条
  • [21] Short-time existence of a quasi-stationary fluid-structure interaction problem for plaque growth
    Abels, Helmut
    Liu, Yadong
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [22] Well-Posedness of Solutions to Stochastic Fluid-Structure Interaction
    Kuan, Jeffrey
    Canic, Suncica
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2024, 26 (01)
  • [23] FEEDBACK STABILIZATION OF A FLUID-STRUCTURE MODEL
    Raymond, Jean-Pierre
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2010, 48 (08) : 5398 - 5443
  • [24] A stochastically perturbed fluid-structure interaction problem modeled by a stochastic viscous wave equation
    Kuan, Jeffrey
    Canic, Suncica
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 310 : 45 - 98
  • [25] Martingale Solutions in Stochastic Fluid-Structure Interaction
    Breit, Dominic
    Mensah, Prince Romeo
    Moyo, Thamsanqa Castern
    JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (02)
  • [26] On the Local Existence of Solutions to the Fluid-Structure Interaction Problem with a Free Interface
    Kukavica, Igor
    Li, Linfeng
    Tuffaha, Amjad
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 90 (03):
  • [27] An Introduction to Fluid-Structure Interaction: Application to the Piston Problem
    Lefrancois, Emmanuel
    Boufflet, Jean-Paul
    SIAM REVIEW, 2010, 52 (04) : 747 - 767
  • [28] Solvability of a fluid-structure interaction problem with semigroup theory
    Krier, Maxime
    Orlik, Julia
    AIMS MATHEMATICS, 2023, 8 (12): : 29490 - 29516
  • [29] FEEDBACK STABILIZATION OF A TWO-DIMENSIONAL FLUID-STRUCTURE INTERACTION SYSTEM WITH MIXED BOUNDARY CONDITIONS
    Fournie, Michel
    Ndiaye, Moctar
    Raymond, Jean-Pierre
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (05) : 3322 - 3359
  • [30] Fluid-poroviscoelastic structure interaction problem with nonlinear geometric coupling
    Kuan, Jeffrey
    Canic, Suncica
    Muha, Boris
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 188 : 345 - 445