Extension theorems related to a fluid-structure interaction problem

被引:0
|
作者
Halanay, Andrei [1 ]
Murea, Cornel Marius [2 ]
Tiba, Dan [3 ,4 ]
机构
[1] Univ Politehn Bucuresti, Dept Math 1, Bucharest, Romania
[2] Univ Haute Alsace, Lab Math Informat & Applicat, Mulhouse, France
[3] Romanian Acad, Inst Math, Bucharest, Romania
[4] Acad Romanian Scientists, Bucharest, Romania
来源
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE | 2018年 / 61卷 / 04期
关键词
fluid-structure interaction; fictituous domain; UNSTEADY INTERACTION; WEAK SOLUTIONS; VISCOUS-FLUID; STOKES FLUID; EXISTENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to prove the existence of an approximate weak solution for a steady fluid-structure interaction problem. A fictitious domain approach with penalization is used. One of the main ingredients is an extension theorem for domains with Lipschitz boundaries. The fluid and structure domains are not necessarily double connected and the structure is not completely surrounded by the fluid. These assumptions are more realistic for some engineering and medical applications.
引用
收藏
页码:417 / 437
页数:21
相关论文
共 50 条