Spectral symmetry of solutions of boundary value problems in Banach algebras

被引:0
作者
Herzog, Gerd [1 ]
Kunstmann, Peer Ch [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Anal, D-76128 Karlsruhe, Germany
关键词
boundary value problems; Banach algebras; symmetry;
D O I
10.4064/ap210520-4-10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For Banach algebras A and solutions u : [0, 1] -> A of u ''(t) + f(u(t)) + lambda u'(t)(2) = 0, u(0) = 0, u(1) = 0, we prove symmetry of the spectrum sigma(u(t)), that is, sigma(u(t)) = sigma(u(1 - t)) for all t is an element of [0, 1], whenever sigma(u([0, 1])) lies in a cone of the complex plane.
引用
收藏
页码:39 / 48
页数:10
相关论文
共 11 条
[1]  
[Anonymous], 1977, Nonlinearity and Functional Analysis
[2]  
[Anonymous], 1991, Bol. Soc. Brasil. Mat. (N.S.), DOI DOI 10.1007/BF01244896
[3]  
Bailey P.B., 1968, Nonlinear Two Point Boundary Value Problems
[4]  
Bonsall F. F., 1973, Complete Normed Algebras
[5]   LIPSCHITZ-TYPE INEQUALITIES FOR ANALYTIC FUNCTIONS IN BANACH ALGEBRAS [J].
Dragomir, Silvestru Sever .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 100 (03) :489-497
[6]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[7]   Symmetry of solutions for quasimonotone second-order elliptic systems in ordered Banach spaces [J].
Herzog, Gerd ;
Reichel, Wolfgang .
MATHEMATISCHE ANNALEN, 2012, 352 (01) :99-112
[8]  
Jacobson N., 1953, Lectures in Abstract Algebra. Vol. II: Linear Algebra, VII
[9]  
Rudin W., 1991, FUNCTIONAL ANAL, V2nd
[10]  
SERRIN J, 1971, ARCH RATION MECH AN, V43, P304