Asymptotic behavior of the Rayleigh-Taylor instability

被引:20
作者
Duchemin, L [1 ]
Josserand, C
Clavin, P
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[2] Univ Paris 06, CNRS, UMR 7607, Modelisat Mecan Lab, F-75252 Paris, France
[3] Univ Aix Marseille 1, IRPHE, CNRS, F-13384 Marseille, France
[4] Univ Aix Marseille 2, IRPHE, CNRS, F-13384 Marseille, France
关键词
D O I
10.1103/PhysRevLett.94.224501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate long time numerical simulations of the inviscid Rayleigh-Taylor instability at Atwood number one using a boundary integral method. We are able to attain the asymptotic behavior for the spikes predicted by Clavin and Williams for which we give a simplified demonstration. In particular, we observe that the spike's curvature evolves as t(3), while the overshoot in acceleration shows good agreement with the suggested 1/t(5) law. Moreover, we obtain consistent results for the prefactor coefficients of the asymptotic laws. Eventually we exhibit the self-similar behavior of the interface profile near the spike.
引用
收藏
页数:4
相关论文
共 19 条
[1]   Stable steady flows in Rayleigh-Taylor instability [J].
Abarzhi, SI .
PHYSICAL REVIEW LETTERS, 1998, 81 (02) :337-340
[2]  
[Anonymous], ASTROPHYS SPACE PHYS
[3]   VORTEX SIMULATIONS OF THE RAYLEIGH-TAYLOR INSTABILITY [J].
BAKER, GR ;
MEIRON, DI ;
ORSZAG, SA .
PHYSICS OF FLUIDS, 1980, 23 (08) :1485-1490
[4]   SCALING OF HARD THERMAL TURBULENCE IN RAYLEIGH-BENARD CONVECTION [J].
CASTAING, B ;
GUNARATNE, G ;
HESLOT, F ;
KADANOFF, L ;
LIBCHABER, A ;
THOMAE, S ;
WU, XZ ;
ZALESKI, S ;
ZANETTI, G .
JOURNAL OF FLUID MECHANICS, 1989, 204 :1-30
[5]  
CLAVIN P, IN PRESS J FLUID MEC
[6]   Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers [J].
Goncharov, VN .
PHYSICAL REVIEW LETTERS, 2002, 88 (13) :4-134502
[7]   Finger formation during droplet impact on a liquid film [J].
Gueyffier, D ;
Zaleski, S .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 1998, 326 (12) :839-844
[8]   Lagrangian formalism for the Rayleigh-Taylor instability [J].
Hazak, G .
PHYSICAL REVIEW LETTERS, 1996, 76 (22) :4167-4170
[9]   ON THE INSTABILITY OF SUPERPOSED FLUIDS IN A GRAVITATIONAL FIELD [J].
LAYZER, D .
ASTROPHYSICAL JOURNAL, 1955, 122 (01) :1-12
[10]   DEFORMATION OF STEEP SURFACE-WAVES ON WATER .1. NUMERICAL-METHOD OF COMPUTATION [J].
LONGUETHIGGINS, MS ;
COKELET, ED .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1976, 350 (1660) :1-26