Wavelet shrinkage estimators of Hilbert transform

被引:1
作者
Chen, Di-Rong [1 ]
Zhao, Yao [1 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Dept Math, LMIB, Beijing 100083, Peoples R China
关键词
Wavelets shrinkage; Hilbert transform; Nonstandard form; Maximal operator; COMPACTLY SUPPORTED WAVELETS; CONVERGENCE; OPERATORS; EXPANSIONS; BASES;
D O I
10.1016/j.jat.2011.02.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Wavelet shrinkage is a strategy to obtain a nonlinear approximation to a given signal and is widely used in data compression, signal processing, statistics, etc. Based on wavelet shrinkage estimators of the original function f, we construct the estimators of its Hilbert transform H f with the help of a representation due to Beylkin, Coifman and Rokhlin. The almost everywhere convergence and norm convergence of the proposed estimators are established. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:652 / 662
页数:11
相关论文
共 50 条
  • [41] Fourier transform versus hilbert transform
    Elijah Liflyand
    Journal of Mathematical Sciences, 2012, 187 (1) : 49 - 56
  • [42] THE HILBERT TRANSFORM OF A MEASURE
    Poltoratski, Alexei
    Simon, Barry
    Zinchenko, Maxim
    JOURNAL D ANALYSE MATHEMATIQUE, 2010, 111 : 247 - 265
  • [43] On the Hilbert Transform of Wavelets
    Chaudhury, Kunal Narayan
    Unser, Michael
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (04) : 1890 - 1894
  • [44] Application of the Wavelet Multi-resolution Analysis and Hilbert transform for the prediction of gear tooth defects
    A. Djebala
    N. Ouelaa
    C. Benchaabane
    D. F. Laefer
    Meccanica, 2012, 47 : 1601 - 1612
  • [45] Application of the Wavelet Multi-resolution Analysis and Hilbert transform for the prediction of gear tooth defects
    Djebala, A.
    Ouelaa, N.
    Benchaabane, C.
    Laefer, D. F.
    MECCANICA, 2012, 47 (07) : 1601 - 1612
  • [46] On the approximation of the Hilbert transform
    Aliev, R. A.
    Gadjieva, Ch. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2019, 25 (02): : 30 - 41
  • [47] EXTENSION OF THE HILBERT TRANSFORM
    Boche, Holger
    Moenich, Ullrich J.
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 3697 - 3700
  • [48] Interaction between the Fourier transform and the Hilbert transform
    Liflyand, Elijah
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2014, 18 (01): : 19 - 32
  • [49] Phase-unwrapping algorithm combined with wavelet transform and Hilbert transform in self-mixing interference for individual microscale particle detection
    Zhao, Yu
    Li, Jiawei
    Zhang, Menglei
    Zhao, Yangyang
    Zou, Jianglin
    Chen, Tao
    CHINESE OPTICS LETTERS, 2023, 21 (04)
  • [50] Enhanced discrete wavelet packet sub-band frequency edge detection using Hilbert transform
    Dibal, P. Y.
    Onwuka, E. N.
    Agajo, J.
    Alenoghena, C. O.
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2018, 16 (01)