Wavelet shrinkage estimators of Hilbert transform

被引:1
作者
Chen, Di-Rong [1 ]
Zhao, Yao [1 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Dept Math, LMIB, Beijing 100083, Peoples R China
关键词
Wavelets shrinkage; Hilbert transform; Nonstandard form; Maximal operator; COMPACTLY SUPPORTED WAVELETS; CONVERGENCE; OPERATORS; EXPANSIONS; BASES;
D O I
10.1016/j.jat.2011.02.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Wavelet shrinkage is a strategy to obtain a nonlinear approximation to a given signal and is widely used in data compression, signal processing, statistics, etc. Based on wavelet shrinkage estimators of the original function f, we construct the estimators of its Hilbert transform H f with the help of a representation due to Beylkin, Coifman and Rokhlin. The almost everywhere convergence and norm convergence of the proposed estimators are established. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:652 / 662
页数:11
相关论文
共 50 条
  • [31] Wavelet Analysis Using Hilbert Transform and Matching Algorithm for Radar Receiver System
    Melgoza, Cesar Martinez
    Lin, Henry
    Izabal, Illianna
    Govalkar, Ameya
    Lee, Kayla
    Erdogan, Alex
    George, Kiran
    2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 233 - 237
  • [32] Construction of Hilbert Transform Pairs of Wavelet Bases and Gabor-Like Transforms
    Chaudhury, Kunal Narayan
    Unser, Michael
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (09) : 3411 - 3425
  • [33] New method for gear fault diagnosis using empirical wavelet transform, Hilbert transform, and cosine similarity metric
    Bettahar, Toufik
    Rahmoune, Chemseddine
    Benazzouz, Djamel
    Merainani, Boualem
    ADVANCES IN MECHANICAL ENGINEERING, 2020, 12 (06)
  • [34] Construction of Hilbert transform pairs of wavelet bases and optimal time-frequency localization
    Chaudhury, Kunal N.
    Unser, Michael
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3277 - 3280
  • [35] Wavelet based Hilbert transform with digital design and application to QCM-SS watermarking
    Maity, Santi Prasad
    Maity, Seba
    RADIOENGINEERING, 2008, 17 (01) : 64 - 72
  • [36] BOUNDEDNESS OF THE HILBERT TRANSFORM ON BESOV SPACES
    Maatoug, A.
    Allaoui, S. E.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2020, 12 (02) : 443 - 450
  • [37] Multi-class fault diagnosis of induction motor using Hilbert and Wavelet Transform
    Konar, Pratyay
    Chattopadhyay, Paramita
    APPLIED SOFT COMPUTING, 2015, 30 : 341 - 352
  • [38] Detection of Ground Target in Forward Scattering RADAR Using Hilbert Transform and Wavelet Technique
    Alla, Mohamed Khalaf H. M.
    Abdullah, R. S. A. Raja
    Raseed, M. F. A.
    INTERNATIONAL REVIEW OF ELECTRICAL ENGINEERING-IREE, 2009, 4 (02): : 320 - 326
  • [39] On boundedness of the Hilbert transform on Marcinkiewicz spaces
    Bekbayev, N. T.
    Tulenov, K. S.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2020, 100 (04): : 26 - 32
  • [40] The bilinear Hilbert transform in UMD spaces
    Amenta, Alex
    Uraltsev, Gennady
    MATHEMATISCHE ANNALEN, 2020, 378 (3-4) : 1129 - 1221