Wavelet shrinkage estimators of Hilbert transform

被引:1
作者
Chen, Di-Rong [1 ]
Zhao, Yao [1 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Dept Math, LMIB, Beijing 100083, Peoples R China
关键词
Wavelets shrinkage; Hilbert transform; Nonstandard form; Maximal operator; COMPACTLY SUPPORTED WAVELETS; CONVERGENCE; OPERATORS; EXPANSIONS; BASES;
D O I
10.1016/j.jat.2011.02.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Wavelet shrinkage is a strategy to obtain a nonlinear approximation to a given signal and is widely used in data compression, signal processing, statistics, etc. Based on wavelet shrinkage estimators of the original function f, we construct the estimators of its Hilbert transform H f with the help of a representation due to Beylkin, Coifman and Rokhlin. The almost everywhere convergence and norm convergence of the proposed estimators are established. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:652 / 662
页数:11
相关论文
共 50 条
  • [1] Wavelet shrinkage estimators of Calderon-Zygmund operators with odd kernels
    Chen Heng
    Wu JiTao
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (09) : 1983 - 1991
  • [2] Wavelet shrinkage estimators of Calderón-Zygmund operators with odd kernels
    Heng Chen
    JiTao Wu
    Science China Mathematics, 2014, 57 : 1983 - 1991
  • [3] Wavelet shrinkage estimators of Calderón-Zygmund operators with odd kernels
    CHEN Heng
    WU JiTao
    Science China(Mathematics), 2014, 57 (09) : 1983 - 1991
  • [4] Hilbert transform of a wavelet system: Boundedness of orthogonal projections in the uniform norm
    Gevorkyan, G. G.
    Kamont, Anna
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2012, 47 (04): : 161 - 167
  • [5] Hilbert transform pairs of biorthogonal wavelet bases
    Yu, Runyi
    Ozkaramanli, Huseyin
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (06) : 2119 - 2125
  • [6] Hilbert transform assisted complex wavelet transform for neuroelectric signal analysis
    Olkkonen, H
    Pesola, P
    Olkkonen, J
    Zhou, H
    JOURNAL OF NEUROSCIENCE METHODS, 2006, 151 (02) : 106 - 113
  • [7] A Method for Blink Artifact Detection and Removal with Wavelet Transform and Hilbert Transform
    Cai, Xiaobai
    Chen, Junjun
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON BIOLOGICAL ENGINEERING AND PHARMACY (BEP 2016), 2016, 3 : 104 - 109
  • [8] Hilbert-wavelet transform for recognition of image rotation
    Iftekharuddin, KM
    Shaik, JS
    Awwal, AAS
    Alam, MS
    PHOTONIC DEVICES AND ALGORITHMS FOR COMPUTING IV, 2002, 4788 : 147 - 158
  • [9] The design of approximate Hilbert transform pairs of wavelet bases
    Selesnick, IW
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (05) : 1144 - 1152
  • [10] Gasoline Engine Knock Edge Diagnosis Based on Wavelet Transform and Hilbert Transform
    Lin G.
    Yang J.
    Chun L.
    Liu Y.
    Neiranji Xuebao/Transactions of CSICE (Chinese Society for Internal Combustion Engines), 2019, 37 (04): : 351 - 358