Hypernatremia subgroups among hospitalized patients by machine learning consensus clustering with different patient survival

被引:7
|
作者
Thongprayoon, Charat [1 ]
Mao, Michael A. [2 ]
Keddis, Mira T. [3 ]
Kattah, Andrea G. [1 ]
Chong, Grace Y. [1 ]
Pattharanitima, Pattharawin [4 ]
Nissaisorakarn, Voravech [5 ]
Garg, Arvind K. [1 ]
Erickson, Stephen B. [1 ]
Dillon, John J. [1 ]
Garovic, Vesna D. [1 ]
Cheungpasitporn, Wisit [1 ]
机构
[1] Mayo Clin, Div Nephrol & Hypertens, Dept Internal Med, Rochester, MN 55905 USA
[2] Mayo Clin, Div Nephrol & Hypertens, Dept Internal Med, Jacksonville, FL USA
[3] Mayo Clin, Div Nephrol & Hypertens, Dept Internal Med, Phoenix, AZ USA
[4] Thammasat Univ, Dept Internal Med, Fac Med, Pathum Thani, Thailand
[5] Tufts Univ, Dept Internal Med, MetroWest Med Ctr, Sch Med, Boston, MA USA
关键词
Hypernatremia; Sodium; Artificial intelligence; Machine learning; Mortality; Hospitalization; CLASS DISCOVERY; MORTALITY; OUTCOMES; ANEMIA; INSIGHTS; SODIUM;
D O I
10.1007/s40620-021-01163-2
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background The objective of this study was to characterize hypernatremia patients at hospital admission into clusters using an unsupervised machine learning approach and to evaluate the mortality risk among these distinct clusters. Methods We performed consensus cluster analysis based on demographic information, principal diagnoses, comorbidities, and laboratory data among 922 hospitalized adult patients with admission serum sodium of > 145 mEq/L. We calculated the standardized difference of each variable to identify each cluster's key features. We assessed the association of each hypernatremia cluster with hospital and 1-year mortality. Results There were three distinct clusters of patients with hypernatremia on admission: 318 (34%) patients in cluster 1, 339 (37%) patients in cluster 2, and 265 (29%) patients in cluster 3. Cluster 1 consisted of more critically ill patients with more severe hypernatremia and hypokalemic hyperchloremic metabolic acidosis. Cluster 2 consisted of older patients with more comorbidity burden, body mass index, and metabolic alkalosis. Cluster 3 consisted of younger patients with less comorbidity burden, higher baseline eGFR, hemoglobin, and serum albumin. Compared to cluster 3, odds ratios for hospital mortality were 15.74 (95% CI 3.75-66.18) for cluster 1, and 6.51 (95% CI 1.48-28.59) for cluster 2, whereas hazard ratios for 1-year mortality were 6.25 (95% CI 3.69-11.46) for cluster 1 and 4.66 (95% CI 2.73-8.59) for cluster 2. Conclusion Our cluster analysis identified three clinically distinct phenotypes with differing mortality risk in patients hospitalized with hypernatremia. Graphic abstract
引用
收藏
页码:921 / 929
页数:9
相关论文
共 50 条
  • [1] Hypernatremia subgroups among hospitalized patients by machine learning consensus clustering with different patient survival
    Charat Thongprayoon
    Michael A. Mao
    Mira T. Keddis
    Andrea G. Kattah
    Grace Y. Chong
    Pattharawin Pattharanitima
    Voravech Nissaisorakarn
    Arvind K. Garg
    Stephen B. Erickson
    John J. Dillon
    Vesna D. Garovic
    Wisit Cheungpasitporn
    Journal of Nephrology, 2022, 35 : 921 - 929
  • [2] Machine Learning Consensus Clustering of Hospitalized Patients with Admission Hyponatremia
    Thongprayoon, Charat
    Hansrivijit, Panupong
    Mao, Michael A.
    Vaitla, Pradeep K.
    Kattah, Andrea G.
    Pattharanitima, Pattharawin
    Vallabhajosyula, Saraschandra
    Nissaisorakarn, Voravech
    Petnak, Tananchai
    Keddis, Mira T.
    Erickson, Stephen B.
    Dillon, John J.
    Garovic, Vesna D.
    Cheungpasitporn, Wisit
    DISEASES, 2021, 9 (03)
  • [3] Subtyping Hyperchloremia among Hospitalized Patients by Machine Learning Consensus Clustering
    Thongprayoon, Charat
    Nissaisorakarn, Voravech
    Pattharanitima, Pattharawin
    Mao, Michael A.
    Kattah, Andrea G.
    Keddis, Mira T.
    Dumancas, Carissa Y.
    Vallabhajosyula, Saraschandra
    Petnak, Tananchai
    Erickson, Stephen B.
    Dillon, John J.
    Garovic, Vesna D.
    Kashani, Kianoush B.
    Cheungpasitporn, Wisit
    MEDICINA-LITHUANIA, 2021, 57 (09):
  • [4] Machine Learning Consensus Clustering Approach for Hospitalized Patients with Dysmagnesemia
    Thongprayoon, Charat
    Sy-Go, Janina Paula T.
    Nissaisorakarn, Voravech
    Dumancas, Carissa Y.
    Keddis, Mira T.
    Kattah, Andrea G.
    Pattharanitima, Pattharawin
    Vallabhajosyula, Saraschandra
    Mao, Michael A.
    Qureshi, Fawad
    Garovic, Vesna D.
    Dillon, John J.
    Erickson, Stephen B.
    Cheungpasitporn, Wisit
    DIAGNOSTICS, 2021, 11 (11)
  • [5] Machine Learning Consensus Clustering Approach for Hospitalized Patients with Phosphate Derangements
    Thongprayoon, Charat
    Dumancas, Carissa Y.
    Nissaisorakarn, Voravech
    Keddis, Mira T.
    Kattah, Andrea G.
    Pattharanitima, Pattharawin
    Petnak, Tananchai
    Vallabhajosyula, Saraschandra
    Garovic, Vesna D.
    Mao, Michael A.
    Dillon, John J.
    Erickson, Stephen B.
    Cheungpasitporn, Wisit
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (19)
  • [6] Subtyping hospitalized patients with hypokalemia by machine learning consensus clustering and associated mortality risks
    Thongprayoon, Charat
    Mao, Michael A.
    Kattah, Andrea G.
    Keddis, Mira T.
    Pattharanitima, Pattharawin
    Erickson, Stephen B.
    Dillon, John J.
    Garovic, Vesna D.
    Cheungpasitporn, Wisit
    CLINICAL KIDNEY JOURNAL, 2022, 15 (02) : 253 - 261
  • [7] Machine Learning Consensus Clustering Approach for Patients with Lactic Acidosis in Intensive Care Units
    Pattharanitima, Pattharawin
    Thongprayoon, Charat
    Petnak, Tananchai
    Srivali, Narat
    Gembillo, Guido
    Kaewput, Wisit
    Chesdachai, Supavit
    Vallabhajosyula, Saraschandra
    O'Corragain, Oisin A.
    Mao, Michael A.
    Garovic, Vesna D.
    Qureshi, Fawad
    Dillon, John J.
    Cheungpasitporn, Wisit
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (11):
  • [8] Trajectories of Serum Sodium on In-Hospital and 1-Year Survival among Hospitalized Patients
    Chewcharat, Api
    Thongprayoon, Charat
    Cheungpasitporn, Wisit
    Mao, Michael A.
    Thirunavukkarasu, Sorkko
    Kashani, Kianoush B.
    CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2020, 15 (05): : 600 - 607
  • [9] Distinct phenotypes of hospitalized patients with hyperkalemia by machine learning consensus clustering and associated mortality risks
    Thongprayoon, Charat
    Kattah, Andrea G.
    Mao, Michael A.
    Keddis, Mira T.
    Pattharanitima, Pattharawin
    Vallabhajosyula, Saraschandra
    Nissaisorakarn, Voravech
    Erickson, Stephen B.
    Dillon, John J.
    Garovic, Vesna D.
    Cheungpasitporn, Wisit
    QJM-AN INTERNATIONAL JOURNAL OF MEDICINE, 2022, 115 (07) : 442 - 449
  • [10] Unsupervised machine learning clustering approach for hospitalized COVID-19 pneumonia patients
    Nalinthasnai, Nuttinan
    Thammasudjarit, Ratchainant
    Tassaneyasin, Tanapat
    Eksombatchai, Dararat
    Sungkanuparph, Somnuek
    Boonsarngsuk, Viboon
    Sutherasan, Yuda
    Junhasavasdikul, Detajin
    Theerawit, Pongdhep
    Petnak, Tananchai
    BMC PULMONARY MEDICINE, 2025, 25 (01):