Modified Mann-type Inertial Subgradient Extragradient Methods for Solving Variational Inequalities in Real Hilbert Spaces

被引:1
作者
Shan, Zhuang [1 ]
Zhu, Lijun [2 ,3 ]
Wang, Yuanheng [4 ]
Yin, Tzu-Chien [5 ]
机构
[1] North Minzu Univ, Coll Math & Informat Sci, Yinchuan 750021, Ningxia, Peoples R China
[2] North Minzu Univ, Key Lab Intelligent Informat & Big Data Proc Ning, Yinchuan 750021, Ningxia, Peoples R China
[3] North Minzu Univ, Hlth Big Data Res Inst, Yinchuan 750021, Ningxia, Peoples R China
[4] Zhejiang Normal Univ, Coll Math & Comp Sci, Jinhua 321004, Zhejiang, Peoples R China
[5] China Med Univ, China Med Univ Hosp, Res Ctr Interneural Comp, Taichung 40402, Taiwan
基金
中国国家自然科学基金;
关键词
Variational Inequality; Subgradient Extragradient Methods; Tseng's Methods; Monotone Operators; Accelerated technique; ITERATIVE ALGORITHMS; FIXED-POINTS; CONVERGENCE; OPERATORS; SYSTEMS;
D O I
10.2298/FIL2205557S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is to investigate the monotone variational inequalities (VIPs) in real Hilbert spaces. We constructed two iterative algorithms based on subgradient extragradient algorithms and Tseng's algorithms for solving VIPs. Convergence analysis of the suggested methods are proved. Several numerical examples to illustrate the efficiency of the methods are given.
引用
收藏
页码:1557 / 1572
页数:16
相关论文
共 38 条
[1]   An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping [J].
Alvarez, F ;
Attouch, H .
SET-VALUED ANALYSIS, 2001, 9 (1-2) :3-11
[2]  
Antipin A.S, 1976, EKONOMIKA MAT METODY, V258, P4413
[3]   Iterative Methods for Fixed Point Problems in Hilbert Spaces Preface [J].
Cegielski, Andrzej .
ITERATIVE METHODS FOR FIXED POINT PROBLEMS IN HILBERT SPACES, 2012, 2057 :IX-+
[4]   SYSTEMS OF VARIATIONAL INEQUALITIES WITH HIERARCHICAL VARIATIONAL INEQUALITY CONSTRAINTS FOR LIPSCHITZIAN PSEUDOCONTRACTIONS [J].
Ceng, Lu-Chuan ;
Petrusel, Adrian ;
Yao, Jen-Chih ;
Yao, Yonghong .
FIXED POINT THEORY, 2019, 20 (01) :113-133
[5]   HYBRID VISCOSITY EXTRAGRADIENT METHOD FOR SYSTEMS OF VARIATIONAL INEQUALITIES, FIXED POINTS OF NONEXPANSIVE MAPPINGS, ZERO POINTS OF ACCRETIVE OPERATORS IN BANACH SPACES [J].
Ceng, Lu-Chuan ;
Petrusel, Adrian ;
Yao, Jen-Chih ;
Yao, Yonghong .
FIXED POINT THEORY, 2018, 19 (02) :487-+
[6]   The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space [J].
Censor, Y. ;
Gibali, A. ;
Reich, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) :318-335
[7]   Algorithms for the Split Variational Inequality Problem [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
NUMERICAL ALGORITHMS, 2012, 59 (02) :301-323
[8]   Extensions of Korpelevich's extragradient method for the variational inequality problem in Euclidean space [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
OPTIMIZATION, 2012, 61 (09) :1119-1132
[9]   Convergence of the Modified Extragradient Method for Variational Inequalities with Non-Lipschitz Operators [J].
Denisov S.V. ;
Semenov V.V. ;
Chabak L.M. .
Cybernetics and Systems Analysis, 2015, 51 (05) :757-765
[10]  
Dong QL, 2021, J NONLINEAR CONVEX A, V22, P53