Characterizing parameter sensitivity and uncertainty for a snow model across hydroclimatic regimes

被引:56
作者
He, Minxue [1 ,6 ,7 ]
Hogue, Terri S. [1 ]
Franz, Kristie J. [2 ]
Margulis, Steven A. [1 ]
Vrugt, Jasper A. [3 ,4 ,5 ]
机构
[1] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA
[2] Iowa State Univ, Dept Geol & Atmospher Sci, Ames, IA 50011 USA
[3] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[4] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, Amsterdam, Netherlands
[5] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA USA
[6] Natl Weather Serv, Off Hydrol Dev, NOAA, Silver Spring, MD USA
[7] Riverside Technol Inc, Ft Collins, CO USA
关键词
National Weather Service; SNOW17; Snowmelt; Uncertainty; Generalized Sensitivity Analysis; Differential Evolution Adaptive Metropolis; HYDROLOGIC MODEL; AUTOMATIC CALIBRATION; PREDICTION; IDENTIFIABILITY; IDENTIFICATION; OPTIMIZATION; ASSIMILATION; VERIFICATION; EVOLUTION;
D O I
10.1016/j.advwatres.2010.10.002
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
The National Weather Service (NWS) uses the SNOW17 model to forecast snow accumulation and ablation processes in snow-dominated watersheds nationwide. Successful application of the SNOW17 relies heavily on site-specific estimation of model parameters. The current study undertakes a comprehensive sensitivity and uncertainty analysis of SNOW17 model parameters using forcing and snow water equivalent (SWE) data from 12 sites with differing meteorological and geographic characteristics. The Generalized Sensitivity Analysis and the recently developed Differential Evolution Adaptive Metropolis (DREAM) algorithm are utilized to explore the parameter space and assess model parametric and predictive uncertainty. Results indicate that SNOW17 parameter sensitivity and uncertainty generally varies between sites. Of the six hydroclimatic characteristics studied, only air temperature shows strong correlation with the sensitivity and uncertainty ranges of two parameters, while precipitation is highly correlated with the uncertainty of one parameter. Posterior marginal distributions of two parameters are also shown to be site-dependent in terms of distribution type. The SNOW17 prediction ensembles generated by the DREAM-derived posterior parameter sets contain most of the observed SWE. The proposed uncertainty analysis provides posterior parameter information on parameter uncertainty and distribution types that can serve as a foundation for a data assimilation framework for hydrologic models. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:114 / 127
页数:14
相关论文
共 71 条
[1]   An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction [J].
Ajami, Newsha K. ;
Duan, Qingyun ;
Sorooshian, Soroosh .
WATER RESOURCES RESEARCH, 2007, 43 (01)
[2]  
Anderson E., 2002, CALIBRATION CONCEPTU
[3]  
ANDERSON EA, 1973, HYDRO17 NWS NAT OC A, P2491
[4]   WATER-QUALITY MODELING - A REVIEW OF THE ANALYSIS OF UNCERTAINTY [J].
BECK, MB .
WATER RESOURCES RESEARCH, 1987, 23 (08) :1393-1442
[5]   THE FUTURE OF DISTRIBUTED MODELS - MODEL CALIBRATION AND UNCERTAINTY PREDICTION [J].
BEVEN, K ;
BINLEY, A .
HYDROLOGICAL PROCESSES, 1992, 6 (03) :279-298
[6]   Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov chain Monte Carlo sampling [J].
Blasone, Roberta-Serena ;
Vrugt, Jasper A. ;
Madsen, Henrik ;
Rosbjerg, Dan ;
Robinson, Bruce A. ;
Zyvoloski, George A. .
ADVANCES IN WATER RESOURCES, 2008, 31 (04) :630-648
[7]   Use of sensitivity and uncertainty measures in distributed hydrological modeling with an application to the MIKE SHE model [J].
Christiaens, K ;
Feyen, J .
WATER RESOURCES RESEARCH, 2002, 38 (09)
[8]  
CROOK AG, 1977, J SOIL WATER CONSERV, V32, P294
[9]   EXTENDED STREAMFLOW FORECASTING USING NWSRFS [J].
DAY, GN .
JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE, 1985, 111 (02) :157-170
[10]  
Doesken N.J., 1987, Western Snow Conference, P14