Modeling a Fault Detection Predictor in Compressor using Machine Learning Approach based on Acoustic Sensor Data

被引:0
|
作者
Divya, M. N. [1 ,2 ]
Narayanappa, C. K. [3 ]
Gangadharaiah, S. L. [4 ]
机构
[1] VTU, MSRIT, VTU Res Ctr, Belagavi, Karnataka, India
[2] REVA Univ, Sch ECE, Bengaluru, India
[3] MS Ramaiah Inst Technol, Dept Med Elect, Bangalore, Karnataka, India
[4] MS Ramaiah Inst Technol, Dept Elect & Commun, Bengaluru, India
关键词
Air-compressor; fault detection; LSTM; multi-layer perception; ANN; acoustic sensor data; SYSTEM; MAINTENANCE; RELIABILITY;
D O I
10.14569/IJACSA.2021.0120973
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Proper functioning of the air compressor ensures stability for many critical systems. The ill-effect of the breakdown caused by the wear and tear in the system can be mitigated if there exists an effective automated fault classification system. Traditionally, the simulation-based methods help to extend to identify the faults; however, those systems are not so effective enough to build real-time adaptive methods for the fault detection and its type. This paper proposes an effective model for the fault classification in the air compressor based on the real-time empirical acoustic sensor time-series data were taken on a sampling frequency of 50Khz. In the proposed work, the time-series datais transformed into the frequency domain using fast Fourier transforms,where half of the signals are considered due to its symmetric representation. Afterward, a masking operation is carried out to extract significant feature vectors fed to the multilayer perception neural network The uniqueness of the proposed system is that it requires less trainable parameters, thus reduces the training time and imposes lower memory overhead. The model is benchmarked with performance metric accuracy, and it is found that the proposed masked feature set-based MLP-ANN exhibits an accuracy of 91.32% In contrast, the LSTM based fault classification model gives only 83.12% accuracy, takes more training time, and consumes more memory. Thus, the proposed model is realistic enough to be considered a real-time monitoring system of the fault and control. However, other performance metrics like precision, recall, and Fl-Score are also promising with the LSTM based fault classifier.
引用
收藏
页码:650 / 667
页数:18
相关论文
共 50 条
  • [41] Machine Learning-Based Sensor Data Modeling Methods for Power Transformer PHM
    Li, Anyi
    Yang, Xiaohui
    Dong, Huanyu
    Xie, Zihao
    Yang, Chunsheng
    SENSORS, 2018, 18 (12)
  • [42] Design of Power Distribution Network Fault Data Collector for Fault Detection, Location and Classification using Machine Learning
    Sowah, Robert A.
    Dzabeng, Nicholas A.
    Ofoli, Abdul R.
    Acakpovi, Amevi
    Koumadi, Koudjo M.
    Ocrah, Joshua
    Martin, Deborah
    2018 IEEE 7TH INTERNATIONAL CONFERENCE ON ADAPTIVE SCIENCE & TECHNOLOGY (IEEE ICAST), 2018,
  • [43] Fault Detection and Diagnosis in Electric Vehicle Systems using IoT and Machine Learning: A Support Vector Machine Approach
    Sabeena, Jasmine
    Patil, Nitin Sudhakar
    Sharma, Priyanka
    Kumar, T. Sathish
    Ushkewar, Sandeep
    Shah, Devang Kumar Umakant
    Shrivastava, Anurag
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 990 - 999
  • [44] A Case Study Based Approach for Remote Fault Detection Using Multi-Level Machine Learning in A Smart Building
    Dey, Maitreyee
    Rana, Soumya Prakash
    Dudley, Sandra
    SMART CITIES, 2020, 3 (02): : 401 - 419
  • [45] A fault detection model for air handling units based on the machine learning algorithms
    Wu, Bingjie
    Cai, Wenjian
    Zhang, Xin
    IECON 2020: THE 46TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2020, : 4789 - 4793
  • [46] A Machine Learning Approach to Aircraft Sensor Error Detection and Correction
    Swischuk, Renee
    Allaire, Douglas
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2019, 19 (04)
  • [47] Enhanced Fault Detection in Semiconductor Wafers using Multisensor Data Fusion and Machine Learning Techniques
    Mehta, Sourav
    Rao, Nadeem
    2024 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBER PHYSICAL SYSTEMS AND INTERNET OF THINGS, ICOICI 2024, 2024, : 631 - 637
  • [48] Fault Detection in Rotating Machinery Based on Sound Signal Using Edge Machine Learning
    Shubita, Rashad R.
    Alsadeh, Ahmad S.
    Khater, Ismail M.
    IEEE ACCESS, 2023, 11 : 6665 - 6672
  • [49] Gear Fault Detection using Machine Learning Techniques- A Simulation-driven Approach
    Handikherkar, V. C.
    Phalle, V. M.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2021, 34 (01): : 212 - 223
  • [50] Detection of Boiler Tube Leakage Fault in a Thermal Power Plant Using Machine Learning Based Data Mining Technique
    Kim, Kyu Han
    Lee, Heung Seok
    Kim, Jung Hwan
    Park, June Ho
    2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2019, : 1006 - 1010