Modeling a Fault Detection Predictor in Compressor using Machine Learning Approach based on Acoustic Sensor Data

被引:0
|
作者
Divya, M. N. [1 ,2 ]
Narayanappa, C. K. [3 ]
Gangadharaiah, S. L. [4 ]
机构
[1] VTU, MSRIT, VTU Res Ctr, Belagavi, Karnataka, India
[2] REVA Univ, Sch ECE, Bengaluru, India
[3] MS Ramaiah Inst Technol, Dept Med Elect, Bangalore, Karnataka, India
[4] MS Ramaiah Inst Technol, Dept Elect & Commun, Bengaluru, India
关键词
Air-compressor; fault detection; LSTM; multi-layer perception; ANN; acoustic sensor data; SYSTEM; MAINTENANCE; RELIABILITY;
D O I
10.14569/IJACSA.2021.0120973
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Proper functioning of the air compressor ensures stability for many critical systems. The ill-effect of the breakdown caused by the wear and tear in the system can be mitigated if there exists an effective automated fault classification system. Traditionally, the simulation-based methods help to extend to identify the faults; however, those systems are not so effective enough to build real-time adaptive methods for the fault detection and its type. This paper proposes an effective model for the fault classification in the air compressor based on the real-time empirical acoustic sensor time-series data were taken on a sampling frequency of 50Khz. In the proposed work, the time-series datais transformed into the frequency domain using fast Fourier transforms,where half of the signals are considered due to its symmetric representation. Afterward, a masking operation is carried out to extract significant feature vectors fed to the multilayer perception neural network The uniqueness of the proposed system is that it requires less trainable parameters, thus reduces the training time and imposes lower memory overhead. The model is benchmarked with performance metric accuracy, and it is found that the proposed masked feature set-based MLP-ANN exhibits an accuracy of 91.32% In contrast, the LSTM based fault classification model gives only 83.12% accuracy, takes more training time, and consumes more memory. Thus, the proposed model is realistic enough to be considered a real-time monitoring system of the fault and control. However, other performance metrics like precision, recall, and Fl-Score are also promising with the LSTM based fault classifier.
引用
收藏
页码:650 / 667
页数:18
相关论文
共 50 条
  • [1] Data Fault Detection in Wireless Sensor Networks Using Machine Learning Techniques
    Priya, P. Indira
    Muthurajkumar, S.
    Daisy, S. Sheeba
    WIRELESS PERSONAL COMMUNICATIONS, 2022, 122 (03) : 2441 - 2462
  • [2] Data Fault Detection in Wireless Sensor Networks Using Machine Learning Techniques
    P. Indira Priya
    S. Muthurajkumar
    S. Sheeba Daisy
    Wireless Personal Communications, 2022, 122 : 2441 - 2462
  • [3] Bayesian and machine learning-based fault detection and diagnostics for marine applications
    Cheliotis, Michail
    Lazakis, Iraklis
    Cheliotis, Angelos
    SHIPS AND OFFSHORE STRUCTURES, 2022, 17 (12) : 2686 - 2698
  • [4] Data processing and augmentation of acoustic array signals for fault detection with machine learning
    Janssen, L. A. L.
    Arteaga, I. Lopez
    JOURNAL OF SOUND AND VIBRATION, 2020, 483
  • [5] Multi-Sensor Fault Diagnosis for Misalignment and Unbalance Detection Using Machine Learning
    Mian, Tauheed
    Choudhary, Anurag
    Fatima, Shahab
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2023, 59 (05) : 5749 - 5759
  • [6] Fault Detection in Photovoltaic Systems Using a Machine Learning Approach
    Zwirtes, Jossias
    Libano, Fausto Bastos
    Silva, Luis Alvaro de Lima
    de Freitas, Edison Pignaton
    IEEE ACCESS, 2025, 13 : 41406 - 41421
  • [7] Weather Data Analysis and Sensor Fault Detection Using An Extended IoT Framework with Semantics, Big Data, and Machine Learning
    Onal, Aras Can
    Sezer, Omer Berat
    Ozbayoglu, Murat
    Dogdu, Erdogan
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 2037 - 2046
  • [8] An Automated Machine-Learning Approach for Road Pothole Detection Using Smartphone Sensor Data
    Wu, Chao
    Wang, Zhen
    Hu, Simon
    Lepine, Julien
    Na, Xiaoxiang
    Ainalis, Daniel
    Stettler, Marc
    SENSORS, 2020, 20 (19) : 1 - 23
  • [9] Real-World Data-Driven Machine-Learning-Based Optimal Sensor Selection Approach for Equipment Fault Detection in a Thermal Power Plant
    Khalid, Salman
    Hwang, Hyunho
    Kim, Heung Soo
    MATHEMATICS, 2021, 9 (21)
  • [10] A Machine Learning-Based Approach for Fault Detection in Power Systems
    Ilius, Pathan
    Almuhaini, Mohammad
    Javaid, Muhammad
    Abido, Mohammad
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2023, 13 (04) : 11216 - 11221