On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge

被引:10
作者
De Luca, Alberto [1 ,2 ]
Ianus, Andrada [3 ]
Leemans, Alexander [1 ]
Palombo, Marco [4 ]
Shemesh, Noam [3 ]
Zhang, Hui [4 ]
Alexander, Daniel C. [4 ]
Nilsson, Markus [5 ]
Froeling, Martijn [6 ]
Biessels, Geert-Jan [2 ]
Zucchelli, Mauro [7 ]
Frigo, Matteo [7 ]
Albay, Enes [7 ,8 ]
Sedlar, Sara [7 ]
Alimi, Abib [7 ]
Deslauriers-Gauthier, Samuel [7 ]
Deriche, Rachid [7 ]
Fick, Rutger [9 ]
Afzali, Maryam [10 ]
Pieciak, Tomasz [11 ,12 ]
Bogusz, Fabian [11 ]
Aja-Fernandez, Santiago [12 ]
Ozarslan, Evren [13 ,14 ]
Jones, Derek K. [10 ]
Chen, Haoze [15 ]
Jin, Mingwu [16 ]
Zhang, Zhijie [15 ]
Wang, Fengxiang [15 ]
Nath, Vishwesh [17 ]
Parvathaneni, Prasanna [18 ]
Morez, Jan [19 ]
Sijbers, Jan [19 ]
Jeurissen, Ben [19 ]
Fadnavis, Shreyas [20 ]
Endres, Stefan [21 ]
Rokem, Ariel [22 ,23 ]
Garyfallidis, Eleftherios [20 ]
Sanchez, Irina [24 ]
Prchkovska, Vesna [24 ]
Rodrigues, Paulo [24 ]
Landman, Bennet A. [25 ]
Schilling, Kurt G. [25 ,26 ]
机构
[1] Univ Med Ctr Utrecht, Image Sci Inst, PROVIDI Lab, Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, UMC Utrecht Brain Ctr, Dept Neurol, Utrecht, Netherlands
[3] Champalimaud Ctr Unknown, Champalimaud Res, Lisbon, Portugal
[4] UCL, Ctr Med Image Comp, Dept Comp Sci, London, England
[5] Lund Univ, Radiol, Clin Sci Lund, Lund, Sweden
[6] Univ Med Ctr Utrecht, Dept Radiol, Utrecht, Netherlands
[7] Univ Cote dAzur, Inria Sophia Antipolis Mediterranee, Sophia Antipolis, France
[8] Istanbul Tech Univ, Istanbul, Turkey
[9] TRIBVN Healthcare, Paris, France
[10] Cardiff Univ, Cardiff Univ Brain Res Imaging Ctr CUBRIC, Sch Psychol, Cardiff, Wales
[11] AGH Univ Sci & Technol, Krakow, Poland
[12] Univ Valladolid, ETSI Telecomunicac, LPI, Valladolid, Spain
[13] Linkoping Univ, Dept Biomed Engn, Linkoping, Sweden
[14] Linkoping Univ, Ctr Med Image Sci & Visualizat, Linkoping, Sweden
[15] North Univ China, Sch Instruments & Elect, Taiyuan, Peoples R China
[16] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA
[17] NVIDIA Corp, Bethesda, MD USA
[18] NIH, Bldg 10, Bethesda, MD 20892 USA
[19] Univ Antwerp, Dept Phys, Imec Vis Lab, Antwerp, Belgium
[20] Indiana Univ, Intelligent Syst Engn, Bloomington, IN 47405 USA
[21] Univ Bremen, Leibniz Inst Mat Engn IWT, Fac Prod Engn, Bremen, Germany
[22] Univ Washington, Dept Psychol, Seattle, WA 98195 USA
[23] Univ Washington, eSci Inst, Seattle, WA 98195 USA
[24] QMENTA Inc, Boston, MA USA
[25] Vanderbilt Univ, Inst Imaging Sci, 221 Kirkland Hall, Nashville, TN 37235 USA
[26] Vanderbilt Univ, Med Ctr, Dept Radiol & Radiol Sci, Nashville, TN 37232 USA
基金
英国惠康基金; 英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
CONSTRAINED SPHERICAL DECONVOLUTION; WHITE-MATTER; COMPARTMENT MODELS; WATER DIFFUSION; ORIENTATION DISPERSION; AXON DIAMETER; MAP-MRI; DENSITY; QUANTIFICATION; VALIDATION;
D O I
10.1016/j.neuroimage.2021.118367
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have been proposed to fit the dMRI signal and decode such properties. Most methods, however, are tested and developed on a limited amount of data, and their applicability to other acquisition schemes remains unknown. With this work, we aimed to shed light on the generalizability of existing dMRI signal representations to different diffusion encoding parameters and brain tissue types. To this end, we organized a community challenge -named MEMENTO, making available the same datasets for fair comparisons across algorithms and techniques. We considered two state-of-the-art diffusion datasets, including single-diffusion-encoding (SDE) spin-echo data from a human brain with over 3820 unique diffusion weightings (the MASSIVE dataset), and double (oscillating) diffusion encoding data (DDE/DODE) of a mouse brain including over 2520 unique data points. A subset of the data sampled in 5 different voxels was openly distributed, and the challenge participants were asked to predict the remaining part of the data. After one year, eight participant teams submitted a total of 80 signal fits. For each submission, we evaluated the mean squared error, the variance of the prediction error and the Bayesian information criteria. The received submissions predicted either multi-shel l SDE data (37%) or DODE data (22%), followed by cartesian SDE data (19%) and DDE (18%). Most submissions predicted the signals measured with SDE remarkably well, with the exception of low and ver y strong diffusion weightings. The prediction of DDE and DODE data seemed more challenging, likely because none of the submissions explicitly accounted for diffusion time and frequency. Next to the choice of the model, decisions on fit procedu r e and hyperparameters play a major role in the prediction performance, highlighting the importance of optimizing and reporting such choices. This work is a community effort to highlight strength and limitations of the field at representing dMRI acquired with trending encoding schemes, gaining insights into how different models generalize to different tissue types and fiber configurations over a large range of diffusion encodings.
引用
收藏
页数:17
相关论文
共 88 条
  • [1] Quantification of microcirculatory parameters by joint analysis of flow-compensated and non-flow-compensated intravoxel incoherent motion (IVIM) data
    Ahlgren, Andre
    Knutsson, Linda
    Wirestam, Ronnie
    Nilsson, Markus
    Stahlberg, Freddy
    Topgaard, Daniel
    Lasic, Samo
    [J]. NMR IN BIOMEDICINE, 2016, 29 (05) : 640 - 649
  • [2] Diffusion tensor imaging of the brain
    Alexander, Andrew L.
    Lee, Jee Eun
    Lazar, Mariana
    Field, Aaron S.
    [J]. NEUROTHERAPEUTICS, 2007, 4 (03) : 316 - 329
  • [3] A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features
    Alexander, Daniel C.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2008, 60 (02) : 439 - 448
  • [4] Imaging brain microstructure with diffusion MRI: practicality and applications
    Alexander, Daniel C.
    Dyrby, Tim B.
    Nilsson, Markus
    Zhang, Hui
    [J]. NMR IN BIOMEDICINE, 2019, 32 (04)
  • [5] Orientationally invariant indices of axon diameter and density from diffusion MRI
    Alexander, Daniel C.
    Hubbard, Penny L.
    Hall, Matt G.
    Moore, Elizabeth A.
    Ptito, Maurice
    Parker, Geoff J. M.
    Dyrby, Tim B.
    [J]. NEUROIMAGE, 2010, 52 (04) : 1374 - 1389
  • [6] [Anonymous], 2009, P INT SOC MAG RESON
  • [7] AxCaliber: A method for measuring axon diameter distribution from diffusion MRI
    Assaf, Yaniv
    Blumenfeld-Katzir, Tamar
    Yovel, Yossi
    Basser, Peter J.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2008, 59 (06) : 1347 - 1354
  • [8] Imaging laminar structures in the gray matter with diffusion MRI
    Assaf, Yaniv
    [J]. NEUROIMAGE, 2019, 197 : 677 - 688
  • [9] Diffusion tensor imaging in Parkinson's disease: Review and meta-analysis
    Atkinson-Clement, Cyril
    Pinto, Serge
    Eusebio, Alexandre
    Coulon, Olivier
    [J]. NEUROIMAGE-CLINICAL, 2017, 16 : 98 - 110
  • [10] White matter changes with age utilizing quantitative diffusion MRI
    Baker, Laurie M.
    Laidlaw, David H.
    Conturo, Thomas E.
    Hogan, Joseph
    Zhao, Yi
    Luo, Xi
    Correia, Stephen
    Cabeen, Ryan
    Lane, Elizabeth M.
    Heaps, Jodi M.
    Bolzenius, Jacob
    Salminen, Lauren E.
    Akbudak, Erbil
    McMichael, Amanda R.
    Usher, Christina
    Behrman, Ashley
    Paul, Robert H.
    [J]. NEUROLOGY, 2014, 83 (03) : 247 - 252