Combining multifractal additive and multiplicative chaos

被引:19
作者
Barral, J [1 ]
Seuret, S [1 ]
机构
[1] INRIA Rocquencourt, F-78153 Le Chesnay, France
关键词
D O I
10.1007/s00220-005-1328-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The purpose of this article is the study of the new class of multifractal measures, which combines additive and multiplicative chaos, defined by nu(gamma,sigma) = Sigma(j >= 1) b(-j gamma)/j(2) Sigma(0 <= k <= bj-1) mu([kb(-j), (k+1)b(-j)))(sigma)delta(kb-j) (gamma >= 0, sigma >= 1), where mu is any positive Borel measure on [0, 1] and b is an integer >= 2. The singularities analysis of the measures nu(gamma,sigma) involves new results on the mass distribution of mu when mu describes large classes of multifractal measures. These results generalize ubiquity theorems associated with the Lebesgue measure. Under suitable assumptions on mu, the multifractal spectrum d(nu gamma,sigma) of nu(gamma,sigma) is linear on [0, h(gamma,sigma)] for some critical value h(gamma,sigma). Then d(nu gamma,sigma) is strictly concave on the right of h(gamma,sigma), and on this part it is deduced from the multifractal spectrum of mu by an affine transformation. This untypical shape is the result of the combination between Dirac masses and atomless multifractal measures. These measures satisfy multifractal formalisms. They open interesting perspectives in modeling discontinuous phenomena.
引用
收藏
页码:473 / 497
页数:25
相关论文
共 54 条
[1]  
[Anonymous], J THEORETICAL PROBAB, DOI 10.1007/BF02213576
[2]  
Arbeiter M, 1996, MATH NACHR, V181, P5
[3]  
ARNOLD VI, 1983, GEOMETRICAL METHODS
[4]  
Aversa V., 1990, Acta Univ. Carolinae. Math. Phys, V31, P5
[5]   Log-infinitely divisible multifractal processes [J].
Bacry, E ;
Muzy, JF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 236 (03) :449-475
[6]   Function series with multifractal variations [J].
Barral, J ;
Seuret, S .
MATHEMATISCHE NACHRICHTEN, 2004, 274 :3-18
[7]   Multiperiodic multifractal martingale measures [J].
Barral, J ;
Coppens, MO ;
Mandelbrot, BB .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (12) :1555-1589
[8]   Multifractal products of cylindrical pulses [J].
Barral, J ;
Mandelbrot, BB .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 124 (03) :409-430
[9]   Continuity of the multifractal spectrum of a random statistically self-similar measure [J].
Barral, J .
JOURNAL OF THEORETICAL PROBABILITY, 2000, 13 (04) :1027-1060
[10]  
BARRAL J, 2004, FRACTAL GEOMETRY APP