On nonhomogeneous elliptic equations with the Hardy-Leray potentials

被引:17
作者
Chen, Huyuan [1 ]
Quaas, Alexander [2 ]
Zhou, Feng [3 ]
机构
[1] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
[2] Univ Tecn Federico Santa Maria, Dept Matemat, Avda Espana 1680,Casilla V-110, Valparaiso, Chile
[3] East China Normal Univ, Sch Math Sci, Ctr Partial Differential Equat, Shanghai 200241, Peoples R China
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2021年 / 144卷 / 01期
关键词
ISOLATED SINGULARITIES; POSITIVE SOLUTIONS; HEAT-EQUATION; KERNEL;
D O I
10.1007/s11854-021-0182-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present some suitable distributional identities of solutions for nonhomogeneous elliptic equations involving the Hardy-Leray potentials and study qualitative properties of the solutions to the corresponding nonhomogeneous problems in this distributional sense. We address some applications on the nonexistence of some nonhomogeneous problems with the Hardy-Leray potentials and the nonexistence principle eigenvalue with some indefinite potentials.
引用
收藏
页码:305 / 334
页数:30
相关论文
共 50 条
  • [1] On Semilinear Elliptic Equations with Hardy-Leray Potentials
    Li, Yayun
    Lei, Yutian
    TOKYO JOURNAL OF MATHEMATICS, 2024, 47 (01) : 1 - 17
  • [2] Nonlinear parabolic equations with Robin boundary conditions and Hardy-Leray type inequalities
    Goldstein, Gisele
    Goldstein, Jerome
    Kombe, Ismail
    Balekoglu, Reyhan Tellioglu
    STOCHASTIC PROCESSES AND FUNCTIONAL ANALYSIS: NEW PERSPECTIVES, 2021, 774 : 55 - 70
  • [3] BOUNDS OF DIRICHLET EIGENVALUES FOR HARDY-LERAY OPERATOR
    Chen, Huyuan
    Zhou, Feng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (04): : 1397 - 1418
  • [4] Nonexistence of positive solutions for nonlinear parabolic Robin problems and Hardy-Leray inequalities
    Goldstein, Gisele Ruiz
    Goldstein, Jerome A.
    Kombe, Ismail
    Tellioglu, Reyhan
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (06) : 2927 - 2942
  • [5] Dirichlet problems involving the Hardy-Leray operators with multiple polars
    Chen, Huyuan
    Chen, Xiaowei
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [6] Boundary singularities of semilinear elliptic equations with Leray-Hardy potential
    Chen, Huyuan
    Veron, Laurent
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (07)
  • [7] A NONHOMOGENEOUS QUASILINEAR ELLIPTIC PROBLEM INVOLVING CRITICAL GROWTH AND HARDY POTENTIALS
    Faria, Luiz F. O.
    Miyagaki, Olimpio H.
    Pereira, Fabio R.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (11-12) : 1171 - 1186
  • [8] Structure Results for Semilinear Elliptic Equations with Hardy Potentials
    Franca, Matteo
    Garrione, Maurizio
    ADVANCED NONLINEAR STUDIES, 2018, 18 (01) : 65 - 85
  • [9] Fujita exponent for non-local parabolic equation involving the Hardy-Leray potential
    Abdellaoui, Boumediene
    Siclari, Giovanni
    Primo, Ana
    JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (03)
  • [10] Boundary singularities of solutions of semilinear elliptic equations with critical Hardy potentials
    Gkikas, Konstantinos T.
    Veron, Laurent
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 : 469 - 540