Fast detection of water loss and hardness for cucumber using hyperspectral imaging technology

被引:17
|
作者
Li, Ying [1 ]
Yin, Yong [1 ]
Yu, Huichun [1 ]
Yuan, Yunxia [1 ]
机构
[1] Henan Univ Sci & Technol, Coll Food & Bioengn, Luoyang 471023, Peoples R China
基金
国家重点研发计划;
关键词
HSI technology; Cucumber; Water loss; Hardness; Visualized map; SELECTION; QUALITY;
D O I
10.1007/s11694-021-01130-2
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Hardness and water loss are the most important determining factors of the freshness of fruits and vegetables. In order to solve the defects of traditional detection methods, Hyperspectral imaging technology was investigated for fast determination of hardness and water loss of cucumber. The standard normal variate and Savitzky-Golay smoothing preprocessing methods were compared, and then optimal wavelengths were selected by competitive adaptive weighting sampling (CARS). 29 characteristic wavelengths for hardness and 42 characteristic wavelengths for water loss were selected by CARS, respectively. The partial least squares regression (PLSR) prediction models were developed based on the optimal characteristic wavelengths and the full spectrum, respectively. The results of the hardness and water loss PLSR model based on the optimal wavelengths (R-2 = 0.9420 and RMSE = 19.5088; R-2 = 0.8218 and RMSE = 1.0132) were better than those based on the full bands. Furthermore, visualized maps of hardness and water loss were built based on the generated model function, showing that the hardness and water loss change with prolonged storage time.
引用
收藏
页码:76 / 84
页数:9
相关论文
共 50 条
  • [1] Fast detection of water loss and hardness for cucumber using hyperspectral imaging technology
    Ying Li
    Yong Yin
    Huichun Yu
    Yunxia Yuan
    Journal of Food Measurement and Characterization, 2022, 16 : 76 - 84
  • [2] Fast and simultaneous detection of wheat kernel adulteration using hyperspectral imaging technology and deep convolutional neural network
    Zhu, Jingwu
    Rao, Zhenhong
    Ji, Haiyan
    JOURNAL OF FOOD SAFETY, 2024, 44 (03)
  • [3] Detection of mango soluble solid content using hyperspectral imaging technology
    Tian, Pan
    Meng, Qinghua
    Wu, Zhefeng
    Lin, Jiaojiao
    Huang, Xin
    Zhu, Hui
    Zhou, Xulin
    Qiu, Zouquan
    Huang, Yuqing
    Li, Yu
    INFRARED PHYSICS & TECHNOLOGY, 2023, 129
  • [4] Rapid nondestructive hardness detection of black highland Barley Kernels via hyperspectral imaging
    Xiong, Chunhui
    She, Yongxin
    Jiao, Xun
    Zhang, Tangwei
    Wang, Miao
    Wang, Mengqiang
    Abd El Aty, A. M.
    Wang, Jing
    Xiao, Ming
    JOURNAL OF FOOD COMPOSITION AND ANALYSIS, 2024, 127
  • [5] Single kernel wheat hardness estimation using near infrared hyperspectral imaging
    Erkinbaev, Chyngyz
    Derksen, Kieran
    Paliwal, Jitendra
    INFRARED PHYSICS & TECHNOLOGY, 2019, 98 : 250 - 255
  • [6] Detection and analysis of sweet potato defects based on hyperspectral imaging technology
    Shao, Yuanyuan
    Liu, Yi
    Xuan, Guantao
    Shi, Yukang
    Li, Quankai
    Hu, Zhichao
    INFRARED PHYSICS & TECHNOLOGY, 2022, 127
  • [7] Nondestructive detection of lipid oxidation in frozen pork using hyperspectral imaging technology
    Cheng, Jiehong
    Sun, Jun
    Xu, Min
    Zhou, Xin
    JOURNAL OF FOOD COMPOSITION AND ANALYSIS, 2023, 123
  • [8] Nondestructive detection of chilling injury in cucumber fruit using hyperspectral imaging with feature selection and supervised classification
    Cen, Haiyan
    Lu, Renfu
    Zhu, Qibing
    Mendoza, Fernando
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2016, 111 : 352 - 361
  • [9] A Micro-Damage Detection Method of Litchi Fruit Using Hyperspectral Imaging Technology
    Xiong, Juntao
    Lin, Rui
    Bu, Rongbin
    Liu, Zhen
    Yang, Zhengang
    Yu, Lianyi
    SENSORS, 2018, 18 (03):
  • [10] Detection of moisture content in peanut kernels using hyperspectral imaging technology coupled with chemometrics
    Sun, Jianfei
    Shi, Xiaojie
    Zhang, Hui
    Xia, Lianming
    Guo, Yemin
    Sun, Xia
    JOURNAL OF FOOD PROCESS ENGINEERING, 2019, 42 (07)