Quenching of a Boundary-Layer Laminar Diffusion Flame in Microgravity

被引:0
|
作者
Wang, Hui Ying [1 ]
Merino, Juan Luis Florenciano [1 ]
机构
[1] Inst Pprime, CNRS, Unite Propre Rech 3346, Dept Fluide Therm Combust,Ecole Natl Super Mecan, F-86961 Futuroscope, France
关键词
SOOT FORMATION; EXTINCTION; COMBUSTION; METHANE; FUEL;
D O I
10.2514/1.J050640
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Radiative quenching of a nonpremixed, heavily sooting, laminar flame established in a shear boundary layer at very low strain rates in microgravity is investigated. The computations include detailed chemistry, transport, and radiation for a three-dimensional reacting flow. Radiative quenching is expected at long residence times, due to soot formation resulting from flame expansion downstream of the flame leading edge. The soot model is based on the formation of two- and three-ringed aromatic species and correctly reproduces the experimental data from a laminar ethylene diffusion flame over a flat plate. The purpose of this study is to better understand the effects of a dimensionless volume coefficient, defined as C-q = V-F/V-ox (where V-F is the fuel-injection velocity and V-ox is the airstream velocity), on flame quenching and its standoff in a shear reactive boundary layer. Experiments have shown that a blue unstable flame (negligible radiative feedback) may change to a yellow shorter flame (significant radiative feedback) with an increase of C-q. This experimental trend is numerically reproduced, showing that an increase of C-q results in a reduction in flame length that is significantly affected by increasing V-F or decreasing V-ox, favoring soot formation. The flame quenching at very low strain rates is a combination of radiative heat loss and combustion efficiency, depending on the fuel-zone geometry and oxygen concentration. Along a semifinite fuel zone, the ratio d(f)/d(b) between the flame standoff distance d(f) and the boundary-layer thickness d(b) converges toward a constant value of 1.2. With reduction in fuel size, radiation loss causes the flame temperature and magnitude of the ratio d(f)/d(b) to decrease until the flame migrates toward the boundary layer (d(f)/d(b) < 1) far away from the trailing edge. In all cases, the soot resides within the boundary layer far from the flame, despite the fuel-zone size and oxygen concentration. The two-dimensional flow structure is approximate for C-q below 0.02, beyond which the three-dimensional effects are of importance, and the reactive boundary layer is significantly lifted above the surface. This flame behavior cannot be described by the available asymptotical solution from a reactive boundary-layer model without taking into account radiation loss.
引用
收藏
页码:383 / 395
页数:13
相关论文
共 50 条
  • [31] Effect of Hydrogen Addition on Soot Formation and Emission in Acetylene Laminar Diffusion Flame
    Wang, Mingjie
    Qian, Xinhao
    Suo, Yange
    Ye, Yanghui
    Li, Guoneng
    Zhang, Zhiguo
    ACS OMEGA, 2023, 8 (28): : 24893 - 24900
  • [32] The effect of sodium chloride on the charge state of soot particles in a laminar diffusion flame
    Bello, Olanrewaju W.
    Kazemimanesh, Mohsen
    Kostiuk, Larry
    Olfert, Jason S.
    COMBUSTION AND FLAME, 2024, 269
  • [33] The importance of thermal radiation transfer in laminar diffusion flames at normal and microgravity
    Liu, Fengshan
    Smallwood, Gregory J.
    Kong, Wenjun
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2011, 112 (07) : 1241 - 1249
  • [34] THE IMPORTANCE OF THERMAL RADIATION TRANSFER IN LAMINAR DIFFUSION FLAMES AT NORMAL AND MICROGRAVITY
    Liu, Fengshan
    Smallwood, Gregory J.
    Kong, Wenjun
    VI. PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON RADIATIVE TRANSFER (RADIATIVE TRANSFER), 2010,
  • [35] Effects of Gravity on Soot Formation in a Coflow Laminar Methane/Air Diffusion Flame
    Kong, Wenjun
    Liu, Fengshan
    MICROGRAVITY SCIENCE AND TECHNOLOGY, 2010, 22 (02) : 205 - 214
  • [36] COMPUTATIONAL STUDY OF FUEL DILUTION EFFECT ON THE SOOT FORMATION IN METHANE-AIR LAMINAR CONFINED DIFFUSION FLAME
    Chowdhuri, Achin Kumar
    Mitra, Arindam
    Chakrabarti, Somnath
    Mandal, Bijan Kumar
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 8A, 2014,
  • [37] QUENCHING DISTANCE AND LAMINAR FLAME SPEED IN A BINARY SUSPENSION OF SOLID FUEL PARTICLES
    Jadidi, M.
    Bidabadi, M.
    Shahrbabaki, A. Sh.
    LATIN AMERICAN APPLIED RESEARCH, 2010, 40 (01) : 39 - 45
  • [38] Numerical Simulation of Soot Formation in Ethylene Laminar Diffusion Flame
    Gao, Xiu-Yan
    Yang, Fan
    Zhang, Chuan-Xin
    Chen, Qi-Xiang
    Yuan, Yuan
    FIRE-SWITZERLAND, 2023, 6 (08):
  • [39] Propagation and stability characteristics of laminar lifted diffusion flame base
    Chen, Ruey-Hung
    Li, Zhiliang
    Phuoc, Tran X.
    COMBUSTION AND FLAME, 2012, 159 (05) : 1821 - 1831
  • [40] Laminar Microjet Diffusion Flame Response to Transverse Acoustic Excitation
    Sim, Hyung Sub
    Vargas, Andres
    Ahn, Dongchan Daniel
    Karagozian, Ann R.
    COMBUSTION SCIENCE AND TECHNOLOGY, 2020, 192 (07) : 1292 - 1319