BRACS: A Dataset for BReAst Carcinoma Subtyping in H&E Histology Images

被引:57
作者
Brancati, Nadia [1 ]
Anniciello, Anna Maria [2 ]
Pati, Pushpak [3 ,4 ]
Riccio, Daniel [1 ,5 ]
Scognamiglio, Giosue [2 ]
Jaume, Guillaume [3 ,6 ]
De Pietro, Giuseppe [1 ]
Di Bonito, Maurizio [2 ]
Foncubierta, Antonio [3 ]
Botti, Gerardo [2 ]
Gabrani, Maria [3 ]
Feroce, Florinda [2 ]
Frucci, Maria [1 ]
机构
[1] ICAR CNR, Inst High Performance Comp & Networking Res Counc, 111 Via Pietro Castellino, I-80131 Naples, Italy
[2] IRCCS, Natl Canc Inst, Fdn Pascale, 53 Via Mariano Semmola, I-80131 Naples, Italy
[3] IBM Res, Saumerstr 4, CH-8803 Zurich, Switzerland
[4] ETH, Ramistr 101, CH-8092 Zurich, Switzerland
[5] Univ Naples Federico II, Dept Elect Engn & Informat Technol, Via Claudio 21, I-80125 Naples, Italy
[6] EPFL Rte Cantonale, CH-1015 Lausanne, Switzerland
来源
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION | 2022年 / 2022卷
关键词
PATHOLOGY;
D O I
10.1093/database/baac093
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Breast cancer is the most commonly diagnosed cancer and registers the highest number of deaths for women. Advances in diagnostic activities combined with large-scale screening policies have significantly lowered the mortality rates for breast cancer patients. However, the manual inspection of tissue slides by pathologists is cumbersome, time-consuming and is subject to significant inter- and intra-observer variability. Recently, the advent of whole-slide scanning systems has empowered the rapid digitization of pathology slides and enabled the development of Artificial Intelligence (AI)-assisted digital workflows. However, AI techniques, especially Deep Learning, require a large amount of high-quality annotated data to learn from. Constructing such task-specific datasets poses several challenges, such as data-acquisition level constraints, time-consuming and expensive annotations and anonymization of patient information. In this paper, we introduce the BReAst Carcinoma Subtyping (BRACS) dataset, a large cohort of annotated Hematoxylin and Eosin (H&E)-stained images to advance AI development in the automatic characterization of breast lesions. BRACS contains 547 Whole-Slide Images (WSIs) and 4539 Regions Of Interest (ROIs) extracted from the WSIs. Each WSI and respective ROIs are annotated by the consensus of three board-certified pathologists into different lesion categories. Specifically, BRACS includes three lesion types, i.e., benign, malignant and atypical, which are further subtyped into seven categories. It is, to the best of our knowledge, the largest annotated dataset for breast cancer subtyping both at WSI and ROI levels. Furthermore, by including the understudied atypical lesions, BRACS offers a unique opportunity for leveraging AI to better understand their characteristics. We encourage AI practitioners to develop and evaluate novel algorithms on the BRACS dataset to further breast cancer diagnosis and patient care.
引用
收藏
页数:10
相关论文
共 42 条
[1]  
Araujo T, 2022, BACH GRAND CHALLENGE
[2]   Classification of breast cancer histology images using Convolutional Neural Networks [J].
Araujo, Teresa ;
Aresta, Guilherme ;
Castro, Eduardo ;
Rouco, Jose ;
Aguiar, Paulo ;
Eloy, Catarina ;
Polonia, Antonio ;
Campilho, Aurelio .
PLOS ONE, 2017, 12 (06)
[3]   BACH: Grand challenge on breast cancer histology images [J].
Aresta, Guilherme ;
Araujo, Teresa ;
Kwok, Scotty ;
Chennamsetty, Sai Saketh ;
Safwan, Mohammed ;
Alex, Varghese ;
Marami, Bahram ;
Prastawa, Marcel ;
Chan, Monica ;
Donovan, Michael ;
Fernandez, Gerardo ;
Zeineh, Jack ;
Kohl, Matthias ;
Walz, Christoph ;
Ludwig, Florian ;
Braunewell, Stefan ;
Baust, Maximilian ;
Quoc Dang Vu ;
Minh Nguyen Nhat To ;
Kim, Eal ;
Kwak, Jin Tae ;
Galal, Sameh ;
Sanchez-Freire, Veronica ;
Brancati, Nadia ;
Frucci, Maria ;
Riccio, Daniel ;
Wang, Yaqi ;
Sun, Lingling ;
Ma, Kaiqiang ;
Fang, Jiannan ;
Kone, Ismael ;
Boulmane, Lahsen ;
Campilho, Aurelio ;
Eloy, Catarina ;
Polonia, Antonio ;
Aguiar, Paulo .
MEDICAL IMAGE ANALYSIS, 2019, 56 :122-139
[4]  
Asif A, 2021, Arxiv, DOI [arXiv:2112.09496, 10.48550/arXiv.2112.09496, DOI 10.48550/ARXIV.2112.09496]
[5]   QuPath: Open source software for digital pathology image analysis [J].
Bankhead, Peter ;
Loughrey, Maurice B. ;
Fernandez, Jose A. ;
Dombrowski, Yvonne ;
Mcart, Darragh G. ;
Dunne, Philip D. ;
McQuaid, Stephen ;
Gray, Ronan T. ;
Murray, Liam J. ;
Coleman, Helen G. ;
James, Jacqueline A. ;
Salto-Tellez, Manuel ;
Hamilton, Peter W. .
SCIENTIFIC REPORTS, 2017, 7
[6]   Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks [J].
Bardou, Dalal ;
Zhang, Kun ;
Ahmad, Sayed Mohammad .
IEEE ACCESS, 2018, 6 :24680-24693
[7]  
Bejnordi B.E, 2022, CAMELYON
[8]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[9]   BreakHis based breast cancer automatic diagnosis using deep learning: Taxonomy, survey and insights [J].
Benhammou, Yassir ;
Achchab, Boujemaa ;
Herrera, Francisco ;
Tabik, Siham .
NEUROCOMPUTING, 2020, 375 :9-24
[10]  
Brancati N, 2022, BRACS BREAST CARCINO