Convergence of conjugate gradient methods with a closed-form stepsize formula

被引:19
作者
Labat, C. [1 ]
Idier, J. [1 ]
机构
[1] Inst Rech Commun & Cybernet Nantes, Nantes, France
关键词
conjugate gradient methods; convergence; stepsize formulas; Weiszfeld method;
D O I
10.1007/s10957-007-9306-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Conjugate gradient methods are efficient methods for minimizing differentiable objective functions in large dimension spaces. However, converging line search strategies are usually not easy to choose, nor to implement. Sun and colleagues (Ann. Oper. Res. 103:161-173, 2001; J. Comput. Appl. Math. 146:37-45, 2002) introduced a simple stepsize formula. However, the associated convergence domain happens to be overrestrictive, since it precludes the optimal stepsize in the convex quadratic case. Here, we identify this stepsize formula with one iteration of the Weiszfeld algorithm in the scalar case. More generally, we propose to make use of a finite number of iterates of such an algorithm to compute the stepsize. In this framework, we establish a new convergence domain, that incorporates the optimal stepsize in the convex quadratic case.
引用
收藏
页码:43 / 60
页数:18
相关论文
共 19 条
  • [1] On global and local convergence of half-quadratic algorithms
    Allain, M
    Idier, J
    Goussard, Y
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (05) : 1130 - 1142
  • [2] Deterministic edge-preserving regularization in computed imaging
    Charbonnier, P
    BlancFeraud, L
    Aubert, G
    Barlaud, M
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (02) : 298 - 311
  • [3] An overview of methods for dependence analysis of concurrent programs
    Chen, ZQ
    Xu, BW
    Zhao, JJ
    [J]. ACM SIGPLAN NOTICES, 2002, 37 (08) : 45 - 52
  • [4] Dai YH, 2001, MATH COMPUT, V70, P1155, DOI 10.1090/S0025-5718-00-01253-9
  • [5] DIXON LCW, 1973, J I MATH APPL, V11, P317
  • [6] FUNCTION MINIMIZATION BY CONJUGATE GRADIENTS
    FLETCHER, R
    REEVES, CM
    [J]. COMPUTER JOURNAL, 1964, 7 (02) : 149 - &
  • [7] METHODS OF CONJUGATE GRADIENTS FOR SOLVING LINEAR SYSTEMS
    HESTENES, MR
    STIEFEL, E
    [J]. JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 49 (06): : 409 - 436
  • [8] Huber P. J., 1981, ROBUST STAT
  • [9] EFFICIENT GENERALIZED CONJUGATE-GRADIENT ALGORITHMS, .1. THEORY
    LIU, Y
    STOREY, C
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1991, 69 (01) : 129 - 137
  • [10] A fast algorithm for deblurring models with Neumann boundary conditions
    Ng, MK
    Chan, RH
    Tang, WC
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (03) : 851 - 866