Carbon nanotube fibers with high specific electrical conductivity: Synergistic effect of heteroatom doping and densification

被引:33
作者
Hong, Seungki [1 ,2 ,3 ]
Nam, Jungtae [1 ]
Park, Seunggyu [1 ]
Lee, Dongju [1 ]
Park, Min [1 ]
Lee, Dong Su [1 ]
Kim, Nam Dong [1 ]
Kim, Dae-Yoon [1 ]
Ku, Bon-Cheol [1 ]
Kim, Yoong Ahm [2 ,3 ]
Hwang, Jun Yeon [1 ]
机构
[1] Korea Inst Sci & Technol KIST, Inst Adv Composite Mat, 92 Chudong Ro, Wanju Gun 55324, Jeonbuk, South Korea
[2] Chonnam Natl Univ, Grad Sch, Sch Polymer Sci & Engn, Dept Polymer Engn, 77 Yongbong Ro, Gwangju 61186, South Korea
[3] Chonnam Natl Univ, Alan G MacDiarmid Energy Res Inst, 77 Yongbong Ro, Gwangju 61186, South Korea
基金
新加坡国家研究基金会;
关键词
Carbon nanotube fibers; Heteroatom doping; Electrical conductivity; Densification; NANOCOMPOSITES;
D O I
10.1016/j.carbon.2021.08.024
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Low contact resistance of carbon nanotube (CNT) fibers are fundamental component to improve the electrical transport properties of CNT fibers. To reduce the contact resistance of CNT fibers, we have demonstrated synergistic effect of macroscopic densification in combination with heteroatom doping. Boron and nitrogen atoms were introduced into the hexagonal carbon lattice of the CNTs through judicious combination of high temperature thermal doping and plasma treatment. Chlorosulfonic acid (CSA) was chosen to provide selectively quaternary nitrogen on the sidewall of the CNTs. During this process, densification of the CNT fibers also proceeded, and consequently reduced the hopping or tunneling distance for inter-CNT electron transfer. As a result, we achieved remarkable electrical conductivity of the CNT fibers as high as 5,896 Sm-2/kg. The mechanism study by which heterogeneous conduction model proved the decrease of the electrical barrier height of the CNT fibers. These results provide a substantial step towards the use of CNT fibers as conductive materials. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:207 / 213
页数:7
相关论文
共 37 条
[11]   Theoretical and experimental investigation of the wet-spinning process for mechanically strong carbon nanotube fibers [J].
Jeong, Hyeon Dam ;
Kim, Seo Gyun ;
Choi, Gyeong Min ;
Park, Minji ;
Ku, Bon-Cheol ;
Lee, Heon Sang .
CHEMICAL ENGINEERING JOURNAL, 2021, 412
[12]   Heterogeneous model for conduction in carbon nanotubes [J].
Kaiser, AB ;
Dusberg, G ;
Roth, S .
PHYSICAL REVIEW B, 1998, 57 (03) :1418-1421
[13]   Defect-Assisted Heavily and Substitutionally Boron-Doped Thin Multiwalled Carbon Nanotubes Using High-Temperature Thermal Diffusion [J].
Kim, Yoong Ahm ;
Aoki, Shunta ;
Fujisawa, Kazunori ;
Ko, Yong-Il ;
Yang, Kap-Seung ;
Yang, Cheol-Min ;
Jung, Yong Chae ;
Hayashi, Takuya ;
Endo, Morinobu ;
Terrones, Mauricio ;
Dresselhaus, Mildred S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (08) :4454-4459
[14]   Direct spinning and densification method for high-performance carbon nanotube fibers [J].
Lee, Jaegeun ;
Lee, Dong-Myeong ;
Jung, Yeonsu ;
Park, Junbeom ;
Lee, Hun Su ;
Kim, Young-Kwan ;
Park, Chong Rae ;
Jeong, Hyeon Su ;
Kim, Seung Min .
NATURE COMMUNICATIONS, 2019, 10 (1)
[15]   Significantly Increased Solubility of Carbon Nanotubes in Superacid by Oxidation and Their Assembly into High-Performance Fibers [J].
Lee, Jaegeun ;
Lee, Dong-Myeong ;
Kim, Young-Kwan ;
Jeong, Hyeon Su ;
Kim, Seung Min .
SMALL, 2017, 13 (38)
[16]   Structure-dependent electrical properties of carbon nanotube fibers [J].
Li, Qingwen ;
Li, Yuan ;
Zhang, Xiefei ;
Chikkannanavar, Satishkumar B. ;
Zhao, Yonghao ;
Dangelewicz, Andrea M. ;
Zheng, Lianxi ;
Doorn, Stephen K. ;
Jia, Quanxi ;
Peterson, Dean E. ;
Arendt, Paul N. ;
Zhu, Yuntian .
ADVANCED MATERIALS, 2007, 19 (20) :3358-+
[17]   Electrically, Chemically, and Photonically Powered Torsional and Tensile Actuation of Hybrid Carbon Nanotube Yarn Muscles [J].
Lima, Marcio D. ;
Li, Na ;
de Andrade, Monica Jung ;
Fang, Shaoli ;
Oh, Jiyoung ;
Spinks, Geoffrey M. ;
Kozlov, Mikhail E. ;
Haines, Carter S. ;
Suh, Dongseok ;
Foroughi, Javad ;
Kim, Seon Jeong ;
Chen, Yongsheng ;
Ware, Taylor ;
Shin, Min Kyoon ;
Machado, Leonardo D. ;
Fonseca, Alexandre F. ;
Madden, John D. W. ;
Voit, Walter E. ;
Galvao, Douglas S. ;
Baughman, Ray H. .
SCIENCE, 2012, 338 (6109) :928-932
[18]   Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles [J].
Liu, Z. F. ;
Fang, S. ;
Moura, F. A. ;
Ding, J. N. ;
Jiang, N. ;
Di, J. ;
Zhang, M. ;
Lepro, X. ;
Galvao, D. S. ;
Haines, C. S. ;
Yuan, N. Y. ;
Yin, S. G. ;
Lee, D. W. ;
Wang, R. ;
Wang, H. Y. ;
Lv, W. ;
Dong, C. ;
Zhang, R. C. ;
Chen, M. J. ;
Yin, Q. ;
Chong, Y. T. ;
Zhang, R. ;
Wang, X. ;
Lima, M. D. ;
Ovalle-Robles, R. ;
Qian, D. ;
Lu, H. ;
Baughman, R. H. .
SCIENCE, 2015, 349 (6246) :400-404
[19]   Variable Range Hopping in Single-Wall Carbon Nanotube Thin Films: A Processing-Structure-Property Relationship Study [J].
Luo, Sida ;
Liu, Tao ;
Benjamin, Shermane M. ;
Brooks, James S. .
LANGMUIR, 2013, 29 (27) :8694-8702
[20]   Low percolation threshold in polycarbonate/multiwalled carbon nanotubes nanocomposites through melt blending with poly(butylene terephthalate) [J].
Maiti, Sandip ;
Suin, Supratim ;
Shrivastava, Nilesh K. ;
Khatua, B. B. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 130 (01) :543-553