GEOMETRIC QUANTIZATION OF COUPLED KAHLER-EINSTEIN METRICS

被引:4
作者
Takahashi, Ryosuke [1 ]
机构
[1] Kyushu Univ, Fac Math, Fukuoka, Japan
来源
ANALYSIS & PDE | 2021年 / 14卷 / 06期
关键词
coupled Kahler-Einstein metric; geometric quantization; balanced metric; SCALAR CURVATURE; K-STABILITY; FUNCTIONALS; OBSTRUCTION; CONVEXITY; BUNDLES; ENERGY; LIMITS; SPACE;
D O I
10.2140/apde.2021.14.1817
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the quantization of coupled Kahler-Einstein (CKE) metrics, namely we approximate CKE metrics by means of the canonical Bergman metrics, called "balanced metrics". We prove the existence and weak convergence of balanced metrics for the negative first Chern class, while for the positive first Chern class, we introduce an algebrogeometric obstruction which interpolates between the DonaldsonFutaki invariant and Chow weight. Then we show the existence and weak convergence of balanced metrics on CKE manifolds under the vanishing of this obstruction. Moreover, restricted to the case when the automorphism group is discrete, we also discuss approximate solutions and a gradient flow method towards the smooth convergence. 1. Introduction 1817 2. Preliminaries 1821 3. Geometric quantization 1827 4. Existence and weak convergence of balanced metrics 1838 5. Towards the C1-convergence 1840 Acknowledgments 1847 References 1847
引用
收藏
页码:1817 / 1849
页数:33
相关论文
共 51 条
[1]   Coupled equations for Kahler metrics and Yang-Mills connections [J].
Alvarez-Consul, Luis ;
Garcia-Fernandez, Mario ;
Garcia-Prada, Oscar .
GEOMETRY & TOPOLOGY, 2013, 17 (05) :2731-2812
[2]  
Berman R., 2014, PREPRINT
[3]   Growth of balls of holomorphic sections and energy at equilibrium [J].
Berman, Robert ;
Boucksom, Sebastien .
INVENTIONES MATHEMATICAE, 2010, 181 (02) :337-394
[4]   K-polystability of Q-Fano varieties admitting Kahler-Einstein metrics [J].
Berman, Robert J. .
INVENTIONES MATHEMATICAE, 2016, 203 (03) :973-1025
[5]   A VARIATIONAL APPROACH TO COMPLEX MONGE-AMPERE EQUATIONS [J].
Berman, Robert J. ;
Boucksom, Sebastien ;
Guedj, Vincent ;
Zeriahi, Ahmed .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2013, (117) :179-245
[6]   A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kahler geometry [J].
Berndtsson, Bo .
INVENTIONES MATHEMATICAE, 2015, 200 (01) :149-200
[7]  
Berndtsson B, 2009, J DIFFER GEOM, V81, P457
[8]  
Bouche T, 1990, Ann. Inst. Fourier (Grenoble), V40, P117
[9]   Uniform K-stability and asymptotics of energy functionals in Kahler geometry [J].
Boucksom, Sebastien ;
Hisamoto, Tomoyuki ;
Jonsson, Mattias .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (09) :2905-2944
[10]  
Catlin D, 1999, TRENDS MATH, P1