Dynamic trajectory generation via numerical multi-objective optimisation

被引:0
|
作者
Seyr, Martin [1 ]
Jakubek, Stefan [1 ]
机构
[1] Vienna Univ Technol, Inst Mech & Mech, Vienna, Austria
关键词
dynamic trajectory planning; multi-objective optimisation; nonlinear optimisation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An algorithm for dynamic trajectory generation employing numerical multi-objective optimisation is presented. The crucial innovations are the description of the trajectory through velocity and curvature on the one hand and the restriction of the otherwise infinite function space to a set of basis functions on the other hand. A number of boundary conditions and inequality constraints ensuring the feasibility of the planned trajectory for real vehicles are adhered to. This algorithm is embedded in a rudimentary map-building scheme and an efficient path-planning concept working with incomplete environment information. The performance of the system is demonstrated by application to randomly generated environments.
引用
收藏
页码:83 / 88
页数:6
相关论文
共 50 条
  • [21] A Hybrid Multi-objective Extremal Optimisation Approach for Multi-objective Combinatorial Optimisation Problems
    Gomez-Meneses, Pedro
    Randall, Marcus
    Lewis, Andrew
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [22] Multi-objective tunicate search optimisation algorithm for numerical problems
    Kumar, Vijay
    Sharma, Isha
    INTERNATIONAL JOURNAL OF INTELLIGENT ENGINEERING INFORMATICS, 2022, 10 (02) : 119 - 144
  • [23] Multi-Objective Generation Dispatch Using Particle Swarm Optimisation
    Rani, C.
    Kumar, M. Rajesh
    Pavan, K.
    INDIA INTERNATIONAL CONFERENCE ON POWER ELECTRONIC S, 2006, : 421 - 424
  • [24] EMOCS: Evolutionary Multi-objective Optimisation for Clinical Scorecard Generation
    Fraser, Diane P.
    Keedwell, Edward
    Michell, Stephen L.
    Sheridan, Ray
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 1174 - 1182
  • [25] Multi-objective optimisation with uncertainty
    Jones, P
    Tiwari, A
    Roy, R
    Corbett, J
    PROCEEDINGS OF THE EIGHTH IASTED INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, 2004, : 114 - 119
  • [26] Key Challenges and Future Directions of Dynamic Multi-objective Optimisation
    Helbig, Marde
    Deb, Kalyanmoy
    Engelbrecht, Andries
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 1256 - 1261
  • [27] The Effect of Epigenetic Blocking on Dynamic Multi-Objective Optimisation Problems
    Yuen, Sizhe
    Ezard, Thomas H. G.
    Sobey, Adam J.
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 379 - 382
  • [28] Considering spatiotemporal evolutionary information in dynamic multi-objective optimisation
    Fan, Qinqin
    Jiang, Min
    Huang, Wentao
    Jiang, Qingchao
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023,
  • [29] Inconsistency reduction in decision making via multi-objective optimisation
    Abel, Edward
    Mikhailov, Ludmil
    Keane, John
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 267 (01) : 212 - 226
  • [30] Multi-objective Train Trajectory Design Based on Dynamic Programming
    Dong, Hairong
    Zhang, Lingying
    Chen, Yao
    Ning, Bin
    Bai, Weiqi
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 9060 - 9065