Topology versus Anderson localization: Nonperturbative solutions in one dimension

被引:42
作者
Altland, Alexander [1 ]
Bagrets, Dmitry [1 ]
Kamenev, Alex [2 ,3 ]
机构
[1] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
[2] Univ Minnesota, WI Fine Theoret Phys Inst, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 08期
关键词
QUANTUM HALL TRANSITION; SIGMA-MODEL; WIRES; SUPERCONDUCTORS; DELOCALIZATION; DISORDER; CHAINS;
D O I
10.1103/PhysRevB.91.085429
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present an analytic theory of quantum criticality in quasi-one-dimensional topological Anderson insulators. We describe these systems in terms of two parameters (g, chi) representing localization and topological properties, respectively. Certain critical values of chi (half-integer for Z classes, or zero for Z(2) classes) define phase boundaries between distinct topological sectors. Upon increasing system size, the two parameters exhibit flow similar to the celebrated two-parameter flow of the integer quantum Hall insulator. However, unlike the quantum Hall system, an exact analytical description of the entire phase diagram can be given in terms of the transfer-matrix solution of corresponding supersymmetric nonlinear sigma models. In Z(2) classes we uncover a hidden supersymmetry, present at the quantum critical point.
引用
收藏
页数:33
相关论文
共 46 条