Global existence and convergence rates for the 3-D compressible micropolar equations without heat conductivity

被引:2
作者
Liu, Lvqiao [1 ]
Huang, Bingkang [1 ]
Zhang, Lan [1 ,2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan, Peoples R China
[2] Wuhan Univ, Computat Sci Hubei Key Lab, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Global existence; convergence rates; micropolar fluid; NAVIER-STOKES EQUATIONS; WELL-POSEDNESS; TIME DECAY; PLANCK; MODEL;
D O I
10.1080/00036811.2020.1716973
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the 3-D full compressible micropolar fluid with positive constant viscosity but with zero heat conductivity is considered. Global well-posedness and optimal convergence rates are established for any small initial data and bounded -norm by combining the local existence and a priori estimates. A priori decay-in-time estimates on the pressure and velocity are used to get the uniform bound of entropy.
引用
收藏
页码:3366 / 3382
页数:17
相关论文
共 27 条
[1]   Global well-posedness for the micropolar fluid system in critical Besov spaces [J].
Chen, Qionglei ;
Miao, Changxing .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) :2698-2724
[2]   Global well-posedness and large-time decay for the 2D micropolar equations [J].
Dong, Bo-Qing ;
Li, Jingna ;
Wu, Jiahong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (06) :3488-3523
[3]   Global solutions for a one-dimensional compressible micropolar fluid model with zero heat conductivity [J].
Duan, Ran .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (02) :477-495
[4]   Optimal Lp-Lq convergence rates for the compressible Navier-Stokes equations with potential force [J].
Duan, Renjun ;
Liu, Hongxia ;
Ukai, Seiji ;
Yang, Tong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 238 (01) :220-233
[5]   Darcy's law and diffusion for a two-fluid Euler-Maxwell system with dissipation [J].
Duan, Renjun ;
Liu, Qingqing ;
Zhu, Changjiang .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (11) :2089-2151
[6]   GREEN'S FUNCTION AND LARGE TIME BEHAVIOR OF THE NAVIER-STOKES-MAXWELL SYSTEM [J].
Duan, Renjun .
ANALYSIS AND APPLICATIONS, 2012, 10 (02) :133-197
[7]   GLOBAL SMOOTH FLOWS FOR THE COMPRESSIBLE EULER-MAXWELL SYSTEM. THE RELAXATION CASE [J].
Duan, Renjun .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2011, 8 (02) :375-413
[8]   Global Existence and Convergence Rates for the 3-D Compressible Navier-Stokes Equations without Heat Conductivity [J].
Duan, Renjun ;
Ma, Hongfang .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (05) :2299-2319
[9]  
ERINGEN AC, 1966, J MATH MECH, V16, P1
[10]   A GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS TO THE TWO-DIMENSIONAL VLASOV-FOKKER-PLANCK AND MAGNETOHYDRODYNAMICS EQUATIONS WITH LARGE INITIAL DATA [J].
Huang, Bingkang ;
Zhang, Lan .
KINETIC AND RELATED MODELS, 2019, 12 (02) :357-396