Improving Reinforcement Learning Agents Using Genetic Algorithms

被引:0
|
作者
Beigi, Akram [1 ]
Parvin, Hamid [1 ]
Mozayani, Nasser [1 ]
Minaei, Behrouz [1 ]
机构
[1] Iran Univ Sci & Technol, Comp Engn Sch, Tehran, Iran
来源
ACTIVE MEDIA TECHNOLOGY | 2010年 / 6335卷
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper a new Reinforcement Learning algorithm was proposed. Q learning is a useful algorithm for agent learning in nondeterministic environment but it is a time consuming algorithm. The presented work applies an evolutionary algorithm for improving Reinforcement Learning algorithm.
引用
收藏
页码:330 / 337
页数:8
相关论文
共 50 条
  • [1] System for foreign exchange trading using genetic algorithms and reinforcement learning
    Hryshko, A
    Down, T
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2004, 35 (13-14) : 763 - 774
  • [2] Integrating reinforcement learning, bidding and genetic algorithms
    Qi, DH
    Sun, R
    IEEE/WIC INTERNATIONAL CONFERENCE ON INTELLIGENT AGENT TECHNOLOGY, PROCEEDINGS, 2003, : 53 - 59
  • [3] Improving Proactive Dialog Agents Using Socially-Aware Reinforcement Learning
    Kraus, Matthias
    Wagner, Nicolas
    Riekenbrauck, Ron
    Minker, Wolfgang
    2023 PROCEEDINGS OF THE 31ST ACM CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION, UMAP 2023, 2023, : 146 - 155
  • [4] Analysis of a Method Improving Reinforcement Learning Agents'Policies
    Kitakoshi, Daisuke
    Shioya, Hiroyuki
    Kurihara, Masahito
    2003, Fuji Technology Press (07)
  • [5] Optimizing reserve size in genetic algorithms with reserve selection using reinforcement learning
    Chen, Yang
    Hu, Jinglu
    Hirasawa, Kotaro
    Yu, Songnian
    PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-8, 2007, : 1337 - +
  • [6] Continuous Parameter Control in Genetic Algorithms using Policy Gradient Reinforcement Learning
    de Miguel Gomez, Alejandro
    Toosi, Farshad Ghassemi
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL INTELLIGENCE (IJCCI), 2021, : 115 - 122
  • [7] Improving reinforcement learning algorithms: Towards optimal learning rate policies
    Mounjid, Othmane
    Lehalle, Charles-Albert
    MATHEMATICAL FINANCE, 2024, 34 (02) : 588 - 621
  • [8] Reinforcement learning in steady-state genetic algorithms
    Lee, CY
    Antonsson, EK
    CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 1793 - 1797
  • [9] Improving swarming using genetic algorithms
    Etienne Renault
    Innovations in Systems and Software Engineering, 2020, 16 : 143 - 159
  • [10] Improving swarming using genetic algorithms
    Renault, Etienne
    INNOVATIONS IN SYSTEMS AND SOFTWARE ENGINEERING, 2020, 16 (02) : 143 - 159