Machine Learning for the Orthopaedic Surgeon Uses and Limitations

被引:25
作者
Alsoof, Daniel [1 ]
McDonald, Christopher L. [1 ]
Kuris, Eren O. [1 ]
Daniels, Alan H. [1 ]
机构
[1] Brown Univ, Warren Alpert Med Sch, Dept Orthoped Surg, Providence, RI 02912 USA
关键词
ARTIFICIAL NEURAL-NETWORKS; 90-DAY READMISSION; HEALTH-CARE; INTELLIGENCE; MODELS; DISCRIMINATION; CLASSIFICATION; CALIBRATION; DISCHARGE; DATABASE;
D O I
10.2106/JBJS.21.01305
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Machine learning is a subset of artificial intelligence in which computer algorithms are trained to make classifications and predictions based on patterns in data. The utilization of these techniques is rapidly expanding in the field of orthopaedic research. There are several domains in which machine learning has application to orthopaedics, including radiographic diagnosis, gait analysis, implant identification, and patient outcome prediction. Several limitations prevent the widespread use of machine learning in the daily clinical environment. However, future work can overcome these issues and enable machine learning tools to be a useful adjunct for orthopaedic surgeons in their clinical decision-making.
引用
收藏
页码:1586 / 1594
页数:9
相关论文
共 82 条
  • [1] Machine Learning and Health Care Disparities in Dermatology
    Adamson, Adewole S.
    Smith, Avery
    [J]. JAMA DERMATOLOGY, 2018, 154 (11) : 1247 - 1248
  • [2] Discrimination and Calibration of Clinical Prediction Models Users' Guides to the Medical Literature
    Alba, Ana Carolina
    Agoritsas, Thomas
    Walsh, Michael
    Hanna, Steven
    Iorio, Alfonso
    Devereaux, P. J.
    McGinn, Thomas
    Guyatt, Gordon
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (14): : 1377 - 1384
  • [3] Surgical research using national databases
    Alluri, Ram K.
    Leland, Hyuma
    Heckmann, Nathanael
    [J]. ANNALS OF TRANSLATIONAL MEDICINE, 2016, 4 (20)
  • [4] Artificial Intelligence Based Hierarchical Clustering of Patient Types and Intervention Categories in Adult Spinal Deformity Surgery Towards a New Classification Scheme that Predicts Quality and Value
    Ames, Christopher P.
    Smith, Justin S.
    Pellise, Ferran
    Kelly, Michael
    Alanay, Ahmet
    Acaroglu, Emre
    Sanchez Perez-Grueso, Francisco Javier
    Kleinstuck, Frank
    Obeid, Ibrahim
    Vila-Casademunt, Alba
    Shaffrey, Christopher I., Jr.
    Burton, Douglas
    Lafage, Virginie
    Schwab, Frank
    Shaffrey Sr, Christopher I. Sr
    Bess, Shay
    Serra-Burriel, Miguel
    [J]. SPINE, 2019, 44 (13) : 915 - 926
  • [5] The Brier score does not evaluate the clinical utility of diagnostic tests or prediction models
    Melissa Assel
    Daniel D. Sjoberg
    Andrew J. Vickers
    [J]. Diagnostic and Prognostic Research, 1 (1)
  • [6] Deep learning predicts hip fracture using confounding patient and healthcare variables
    Badgeley, Marcus A.
    Zech, John R.
    Oakden-Rayner, Luke
    Glicksberg, Benjamin S.
    Liu, Manway
    Gale, William
    McConnell, Michael, V
    Percha, Bethany
    Snyder, Thomas M.
    Dudley, Joel T.
    [J]. NPJ DIGITAL MEDICINE, 2019, 2 (1)
  • [7] The role of artificial intelligence and machine learning in predicting orthopaedic outcomes
    Bayliss, L.
    Jones, L. D.
    [J]. BONE & JOINT JOURNAL, 2019, 101B (12) : 1476 - 1478
  • [8] Machine Learning for industrial applications: A comprehensive literature review
    Bertolini, Massimo
    Mezzogori, Davide
    Neroni, Mattia
    Zammori, Francesco
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 175
  • [9] Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet
    Bien, Nicholas
    Rajpurkar, Pranav
    Ball, Robyn L.
    Irvin, Jeremy
    Park, Allison
    Jones, Erik
    Bereket, Michael
    Patel, Bhavik N.
    Yeom, Kristen W.
    Shpanskaya, Katie
    Halabi, Safwan
    Zucker, Evan
    Fanton, Gary
    Amanatullah, Derek F.
    Beaulieu, Christopher F.
    Riley, Geoffrey M.
    Stewart, Russell J.
    Blankenberg, Francis G.
    Larson, David B.
    Jones, Ricky H.
    Langlotz, Curtis P.
    Ng, Andrew Y.
    Lungren, Matthew P.
    [J]. PLOS MEDICINE, 2018, 15 (11)
  • [10] A Novel Machine Learning Model Developed to Assist in Patient Selection for Outpatient Total Shoulder Arthroplasty
    Biron, Dustin R.
    Sinha, Ishan
    Kleiner, Justin E.
    Aluthge, Dilum P.
    Goodman, Avi D.
    Sarkar, I. Neil
    Cohen, Eric
    Daniels, Alan H.
    [J]. JOURNAL OF THE AMERICAN ACADEMY OF ORTHOPAEDIC SURGEONS, 2020, 28 (13) : E580 - E585