Materials and Systems for Organic Redox Flow Batteries: Status and Challenges

被引:376
作者
Wei, Xiaoliang [1 ,2 ]
Pan, Wenxiao [3 ]
Duan, Wentao [1 ,2 ]
Hollas, Aaron [2 ]
Yang, Zheng [1 ,2 ]
Li, Bin [2 ]
Nie, Zimin [2 ]
Liu, Jun [1 ,2 ]
Reed, David [2 ]
Wang, Wei [2 ]
Sprenkle, Vincent [2 ]
机构
[1] JCESR, Argonne, IL 60439 USA
[2] Pacific Northwest Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd, Richland, WA 99354 USA
[3] Univ Wisconsin, Dept Mech Engn, 1513 Univ Ave, Madison, WI 53706 USA
关键词
HIGH-ENERGY DENSITY; LITHIUM-ION BATTERIES; ALL-VANADIUM; ELECTROCHEMICAL PROPERTIES; LOW-COST; MOLECULAR-WEIGHT; CAPACITY DECAY; STORAGE; CATHOLYTE; DESIGN;
D O I
10.1021/acsenergylett.7b00650
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Redox flow batteries (RFBs) are propitious stationary energy storage technologies with exceptional scalability and flexibility to improve the stability, efficiency, and sustainability of our power grid. The redox-active materials are the key component for RFBs with which to achieve high energy density and good cyclability. Traditional inorganic-based materials encounter critical technical and economic limitations such as low solubility, inferior electrochemical activity, and high cost. Redox-active organic materials (ROMs) are promising alternative "green" candidates to push the boundaries of energy storage because of the significant advantages of molecular diversity, structural tailorability, and natural abundance. Here, the recent development of a variety of ROMs and associated battery designs in both aqueous and nonaqueous electrolytes are reviewed. The critical challenges and potential research opportunities for developing practically relevant organic flow batteries are discussed.
引用
收藏
页码:2187 / 2204
页数:18
相关论文
共 166 条
[1]  
[Anonymous], 2016, SKUIRTNTR9659
[2]   Molecular Level Understanding of the Factors Affecting the Stability of Dimethoxy Benzene Catholyte Candidates from First-Principles Investigations [J].
Assary, Rajeev S. ;
Zhang, Lu ;
Huang, Jinhua ;
Curtiss, Larry A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (27) :14531-14538
[3]   Emerging electrochemical energy conversion and storage technologies [J].
Badwal, Sukhvinder P. S. ;
Giddey, Sarbjit S. ;
Munnings, Christopher ;
Bhatt, Anand I. ;
Hollenkamp, Anthony F. .
FRONTIERS IN CHEMISTRY, 2014, 2
[4]   A Neutral pH Aqueous Organic-Organometallic Redox Flow Battery with Extremely High Capacity Retention [J].
Beh, Eugene S. ;
De Porcellinis, Diana ;
Gracia, Rebecca L. ;
Xia, Kay T. ;
Gordon, Roy G. ;
Aziz, Michael J. .
ACS ENERGY LETTERS, 2017, 2 (03) :639-644
[5]   Membrane-less hydrogen bromine flow battery [J].
Braff, William A. ;
Bazant, Martin Z. ;
Buie, Cullen R. .
NATURE COMMUNICATIONS, 2013, 4
[6]   An All-Organic Non-aqueous Lithium-Ion Redox Flow Battery [J].
Brushett, Fikile R. ;
Vaughey, John T. ;
Jansen, Andrew N. .
ADVANCED ENERGY MATERIALS, 2012, 2 (11) :1390-1396
[7]   Application of Redox Non-Innocent Ligands to Non-Aqueous Flow Battery Electrolytes [J].
Cappillino, Patrick J. ;
Pratt, Harry D., III ;
Hudak, Nicholas S. ;
Tomson, Neil C. ;
Anderson, Travis M. ;
Anstey, Mitchell R. .
ADVANCED ENERGY MATERIALS, 2014, 4 (01)
[8]   Tuning the Stability of Organic Active Materials for Nonaqueous Redox Flow Batteries via Reversible, Electrochemically Mediated Li+ Coordination [J].
Carino, Emily V. ;
Staszak-Jirkovsky, Jakub ;
Assary, Rajeev S. ;
Curtiss, Larry A. ;
Markovic, Nenad M. ;
Brushett, Fikile R. .
CHEMISTRY OF MATERIALS, 2016, 28 (08) :2529-2539
[9]   Concentration-Dependent Dimerization of Anthraquinone Disulfonic Acid and Its Impact on Charge Storage [J].
Carney, Thomas J. ;
Collins, Steven J. ;
Moore, Jeffrey S. ;
Brushett, Fikile R. .
CHEMISTRY OF MATERIALS, 2017, 29 (11) :4801-4810
[10]   Highly water-soluble three-redox state organic dyes as bifunctional analytes [J].
Carretero-Gonzalez, Javier ;
Castillo-Martinez, Elizabeth ;
Armand, Michel .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (11) :3521-3530