Solving coefficient inverse problems for nonlinear singularly perturb e d equations of the reaction-diffusion-advection type with data on the position of a reaction front

被引:34
作者
Lukyanenko, D. V. [1 ,2 ]
Borzunov, A. . A. . [1 ]
Shishlenin, M. A. [3 ,4 ,5 ]
机构
[1] Lomonosov Moscow State Univ, Dept Math, Fac Phys, Moscow 119991, Russia
[2] Moscow Ctr Fundamental & Appl Math, Moscow 119234, Russia
[3] Inst Computat Math & Math Geophys SB RAS, Novosibirsk 630090, Russia
[4] Novosibirsk State Univ, Novosibirsk 630090, Russia
[5] Akademgorodok, Math Ctr, Novosibirsk 630090, Russia
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2021年 / 99卷
关键词
Coefficient inverse problem; Reaction-diffusion-advection equation; Singularly perturbed problem; Inverse problem with data on the position of a reaction front; NUMERICAL-METHODS; CONTINUATION PROBLEM; BOUNDARY; MODEL; TERM;
D O I
10.1016/j.cnsns.2021.105824
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An approach to solving coefficient inverse problems for nonlinear reaction-diffusionadvection equations is proposed. As an example, we consider an inverse problem of restoring a coefficient in a nonlinear Burgers-type equation. One of the features of the inverse problem is a use of additional information about the position of a reaction front. Another feature of the approach is a use of asymptotic analysis methods to select a good initial guess in a gradient method for minimizing a cost functional that occurs when solving the coefficient inverse problem. Numerical experiments demonstrate the effectiveness of the proposed approach. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 48 条
[21]   A tutorial on inverse problems for anomalous diffusion processes [J].
Jin, Bangti ;
Rundell, William .
INVERSE PROBLEMS, 2015, 31 (03)
[22]   Quasi-solution in inverse coefficient problems [J].
Kabanikhin, S. ;
Shishlenin, M. .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2008, 16 (07) :705-713
[23]   Recovering a Time-Dependent Diffusion Coefficient from Nonlocal Data [J].
Kabanikhin S.I. ;
Shishlenin M.A. .
Numerical Analysis and Applications, 2018, 11 (01) :38-44
[24]   Definitions and examples of inverse and ill-posed problems [J].
Kabanikhin, S. I. .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2008, 16 (04) :317-357
[25]  
Kabanikhin S.I., 2011, INVERSE ILL POSED PR, V55
[26]   A brief survey on numerical methods for solving singularly perturbed problems [J].
Kadalbajoo, Mohan K. ;
Gupta, Vikas .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (08) :3641-3716
[27]   The inverse problem of reconstructing reaction-diffusion systems [J].
Kaltenbacher, Barbara ;
Rundell, William .
INVERSE PROBLEMS, 2020, 36 (06)
[28]   On the identification of a nonlinear term in a reaction-diffusion equation [J].
Kaltenbacher, Barbara ;
Rundell, William .
INVERSE PROBLEMS, 2019, 35 (11)
[29]   Picosecond scale experimental verification of a globally convergent algorithm for a coefficient inverse problem [J].
Klibanov, Michael V. ;
Fiddy, Michael A. ;
Beilina, Larisa ;
Pantong, Natee ;
Schenk, John .
INVERSE PROBLEMS, 2010, 26 (04)
[30]   Two approaches to describing the turbulent exchange within the atmospheric surface layer [J].
Levashova N.T. ;
Muhartova J.V. ;
Olchev A.V. .
Mathematical Models and Computer Simulations, 2017, 9 (6) :697-707