Solving coefficient inverse problems for nonlinear singularly perturb e d equations of the reaction-diffusion-advection type with data on the position of a reaction front

被引:34
作者
Lukyanenko, D. V. [1 ,2 ]
Borzunov, A. . A. . [1 ]
Shishlenin, M. A. [3 ,4 ,5 ]
机构
[1] Lomonosov Moscow State Univ, Dept Math, Fac Phys, Moscow 119991, Russia
[2] Moscow Ctr Fundamental & Appl Math, Moscow 119234, Russia
[3] Inst Computat Math & Math Geophys SB RAS, Novosibirsk 630090, Russia
[4] Novosibirsk State Univ, Novosibirsk 630090, Russia
[5] Akademgorodok, Math Ctr, Novosibirsk 630090, Russia
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2021年 / 99卷
关键词
Coefficient inverse problem; Reaction-diffusion-advection equation; Singularly perturbed problem; Inverse problem with data on the position of a reaction front; NUMERICAL-METHODS; CONTINUATION PROBLEM; BOUNDARY; MODEL; TERM;
D O I
10.1016/j.cnsns.2021.105824
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An approach to solving coefficient inverse problems for nonlinear reaction-diffusionadvection equations is proposed. As an example, we consider an inverse problem of restoring a coefficient in a nonlinear Burgers-type equation. One of the features of the inverse problem is a use of additional information about the position of a reaction front. Another feature of the approach is a use of asymptotic analysis methods to select a good initial guess in a gradient method for minimizing a cost functional that occurs when solving the coefficient inverse problem. Numerical experiments demonstrate the effectiveness of the proposed approach. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 48 条
[1]   A simple two-variable model of cardiac excitation [J].
Aliev, RR ;
Panfilov, AV .
CHAOS SOLITONS & FRACTALS, 1996, 7 (03) :293-301
[2]  
Alifanov O. M., 1988, EXTREME METHODS SOLU
[3]  
Alshin A., 2006, Comput. Math. Math. Phys, V46, P1320, DOI DOI 10.1134/S0965542506080057
[4]  
[Anonymous], 1996, Regularization of inverse problems, DOI 10.1007/978-94-009-1740-8
[5]   Asymptotics of the front motion in the reaction-diffusion-advection problem [J].
Antipov, E. A. ;
Levashova, N. T. ;
Nefedov, N. N. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2014, 54 (10) :1536-1549
[6]   A comparative analysis of numerical methods of solving the continuation problem for 1D parabolic equation with the data given on the part of the boundary [J].
Belonosov, Andrey ;
Shishlenin, Maxim ;
Klyuchinskiy, Dmitriy .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (02) :735-755
[7]   Regularization Methods of the Continuation Problem for the Parabolic Equation [J].
Belonosov, Andrey ;
Shishlenin, Maxim .
NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016), 2017, 10187 :220-226
[8]  
Butuzov VF, 1997, ADV CHEM PHYS, V97, P47, DOI 10.1002/9780470141564.ch2
[9]   AN INVERSE PROBLEM FOR A NON-LINEAR DIFFUSION EQUATION [J].
CANNON, JR ;
DUCHATEAU, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1980, 39 (02) :272-289
[10]  
Danilov V.G., 1995, MATH MODELLING HEAT, DOI [10.1007/978-94-011-0409-8, DOI 10.1007/978-94-011-0409-8]