Geometric Primitives in LiDAR Point Clouds: A Review

被引:88
|
作者
Xia, Shaobo [1 ]
Chen, Dong [2 ]
Wang, Ruisheng [1 ,3 ]
Li, Jonathan [4 ]
Zhang, Xinchang [3 ]
机构
[1] Univ Calgary, Dept Geomat Engn, Calgary, AB T2N 1N4, Canada
[2] Nanjing Forestry Univ, Coll Civil Engn, Nanjing, Peoples R China
[3] Guangzhou Univ, Sch Geog Sci, Guangzhou 510006, Peoples R China
[4] Univ Waterloo, Dept Geog & Environm Management, Waterloo, ON N2L 3G1, Canada
基金
国家重点研发计划; 加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Edges; geometric primitives; light detection and ranging (lidar); lines; planes; point clouds; regularization; skeletons; volumetric shapes; LASER-SCANNING DATA; LINE SEGMENT EXTRACTION; HOUGH TRANSFORM; BUILDING MODELS; SEMIAUTOMATED EXTRACTION; OPTIMIZATION APPROACH; AUTOMATED EXTRACTION; OBJECT RECOGNITION; ROOF SEGMENTATION; VEHICLE DETECTION;
D O I
10.1109/JSTARS.2020.2969119
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To the best of our knowledge, the most recent light detection and ranging (lidar)-based surveys have been focused only on specific applications such as reconstruction and segmentation, as well as data processing techniques based on a specific platform, e.g., mobile laser. However, in this article, lidar point clouds are understood from a new and universal perspective, i.e., geometric primitives embedded in versatile objects in the physical world. In lidar point clouds, the basic unit is the point coordinate. Geometric primitives that consist of a group of discrete points may be viewed as one kind of abstraction and representation of lidar data at the entity level. We categorize geometric primitives into two classes: shape primitives, e.g., lines, surfaces, and volumetric shapes, and structure primitives, represented by skeletons and edges. In recent years, many efforts from different communities, such as photogrammetry, computer vision, and computer graphics, have been made to finalize geometric primitive detection, regularization, and in-depth applications. Interpretations of geometric primitives from multiple disciplines try to convey the significance of geometric primitives, the latest processing techniques regarding geometric primitives, and their potential possibilities in the context of lidar point clouds. To this end, primitive-based applications are reviewed with an emphasis on object extraction and reconstruction to clearly show the significances of this article. Next, we survey and compare methods for geometric primitive extraction and then review primitive regularization methods that add real-world constrains to initial primitives. Finally, we summarize the challenges, expected applications, and describe possible future for primitive extraction methods that can achieve globally optimal results efficiently, even with disorganized, uneven, noisy, incomplete, and large-scale lidar point clouds.
引用
收藏
页码:685 / 707
页数:23
相关论文
共 50 条
  • [21] Geometric Quality Indicators for Scanned Point Clouds
    Suzuki, Hiromasa
    Ohtake, Yutaka
    Shibata, Shusaku
    Michikawa, Takashi
    EMERGING TECHNOLOGY IN PRECISION ENGINEERING XIV, 2012, 523-524 : 901 - +
  • [22] OPTIMAL TRANSPORT FOR CHANGE DETECTION ON LIDAR POINT CLOUDS
    Fiorucci, Marco
    Naylor, Peter
    Yamada, Makoto
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 982 - 985
  • [23] Filtering of Airborne Lidar Point Clouds for Complex Cityscapes
    Jiang Jingjue
    Zhang Zuxun
    Ming Ying
    GEO-SPATIAL INFORMATION SCIENCE, 2008, 11 (01) : 21 - 25
  • [24] SOLID IMAGE EXTRACTION FROM LIDAR POINT CLOUDS
    Munaretto, D.
    Roggero, M.
    3D-ARCH 2013 - 3D VIRTUAL RECONSTRUCTION AND VISUALIZATION OF COMPLEX ARCHITECTURES, 2013, 40-5-W1 : 189 - 195
  • [25] Development on Filtering Algorithms of Airborne LiDAR Point Clouds
    Shi, Jianqing
    Jiang, Tingchen
    Jiao, Minglian
    VIBRATION, STRUCTURAL ENGINEERING AND MEASUREMENT II, PTS 1-3, 2012, 226-228 : 1892 - 1898
  • [26] Object Segmentation of Cluttered Airborne LiDAR Point Clouds
    Caros, Mariona
    Just, Ariadna
    Segui, Santi
    Vitria, Jordi
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2022, 356 : 259 - 268
  • [27] Plane Segmentation Based on the Optimal-Vector-Field in LiDAR Point Clouds
    Xu, Sheng
    Wang, Ruisheng
    Wang, Hao
    Yang, Ruigang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (11) : 3991 - 4007
  • [28] Surface-Based Registration of Airborne and Terrestrial Mobile LiDAR Point Clouds
    Teo, Tee-Ann
    Huang, Shih-Han
    REMOTE SENSING, 2014, 6 (12) : 12686 - 12707
  • [29] Registration of Laser Scanning Point Clouds: A Review
    Cheng, Liang
    Chen, Song
    Liu, Xiaoqiang
    Xu, Hao
    Wu, Yang
    Li, Manchun
    Chen, Yanming
    SENSORS, 2018, 18 (05)
  • [30] Geometric relation based point clouds classification and segmentation
    Yang, Wenbin
    Sheng, Suqin
    Luo, Xiangfeng
    Xie, Shaorong
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (11):