SWCGAN: Generative Adversarial Network Combining Swin Transformer and CNN for Remote Sensing Image Super-Resolution

被引:42
|
作者
Tu, Jingzhi [1 ]
Mei, Gang [1 ]
Ma, Zhengjing [1 ]
Piccialli, Francesco [2 ]
机构
[1] China Univ Geosci, Sch Engn & Technol, Beijing 100083, Peoples R China
[2] Univ Naples Federico II, Dept Math & Applicat R Caccioppoli, I-80138 Naples, Italy
基金
中国国家自然科学基金;
关键词
Feature extraction; Superresolution; Transformers; Remote sensing; Image reconstruction; Generative adversarial networks; Task analysis; Convolutional layers; generative adversarial network (GAN); remote sensing images; super-resolution reconstruction; swin transformer;
D O I
10.1109/JSTARS.2022.3190322
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Easy and efficient acquisition of high-resolution remote sensing images is of importance in geographic information systems. Previously, deep neural networks composed of convolutional layers have achieved impressive progress in super-resolution reconstruction. However, the inherent problems of the convolutional layer, including the difficulty of modeling the long-range dependency, limit the performance of these networks on super-resolution reconstruction. To address the abovementioned problems, we propose a generative adversarial network (GAN) by combining the advantages of the swin transformer and convolutional layers, called SWCGAN. It is different from the previous super-resolution models, which are composed of pure convolutional blocks. The essential idea behind the proposed method is to generate high-resolution images by a generator network with a hybrid of convolutional and swin transformer layers and then to use a pure swin transformer discriminator network for adversarial training. In the proposed method, first, we employ a convolutional layer for shallow feature extraction that can be adapted to flexible input sizes; second, we further propose the residual dense swin transformer block to extract deep features for upsampling to generate high-resolution images; and third, we use a simplified swin transformer as the discriminator for adversarial training. To evaluate the performance of the proposed method, we compare the proposed method with other state-of-the-art methods by utilizing the UCMerced benchmark dataset, and we apply the proposed method to real-world remote sensing images. The results demonstrate that the reconstruction performance of the proposed method outperforms other state-of-the-art methods in most metrics.
引用
收藏
页码:5662 / 5673
页数:12
相关论文
共 50 条
  • [41] TE-SAGAN: An Improved Generative Adversarial Network for Remote Sensing Super-Resolution Images
    Xu, Yongyang
    Luo, Wei
    Hu, Anna
    Xie, Zhong
    Xie, Xuejing
    Tao, Liufeng
    REMOTE SENSING, 2022, 14 (10)
  • [42] Single Remote Sensing Image Super-Resolution via a Generative Adversarial Network With Stratified Dense Sampling and Chain Training
    Meng, Fanen
    Wu, Sensen
    Li, Yadong
    Zhang, Zhe
    Feng, Tian
    Liu, Renyi
    Du, Zhenhong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 22
  • [43] IESRGAN: Enhanced U-Net Structured Generative Adversarial Network for Remote Sensing Image Super-Resolution Reconstruction
    Yue, Xiaohan
    Liu, Danfeng
    Wang, Liguo
    Benediktsson, Jon Atli
    Meng, Linghong
    Deng, Lei
    REMOTE SENSING, 2023, 15 (14)
  • [44] Underwater Image Super-Resolution Based on the Combination of Generative Adversarial Networks and Transformer
    Trung Nguyen Quoc
    Nguyen Pham Thi Thao
    Viet-Tuan Le
    Vinh Truong Hoang
    Surinwarangkoon, Thongchai
    INTELLIGENCE OF THINGS: TECHNOLOGIES AND APPLICATIONS, ICIT 2024, VOL 2, 2025, 230 : 3 - 12
  • [45] Spstnet: image super-resolution using spatial pyramid swin transformer network
    Sun, Yemei
    Wang, Jiao
    Yang, Yue
    Zhang, Yan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (04)
  • [46] Remote-sensing image super-resolution using classifier-based generative adversarial networks
    Yue, Haosong
    Cheng, Jiaxiang
    Liu, Zhong
    Chen, Weihai
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (04)
  • [47] A Transformer-Unet Generative Adversarial Network for the Super-Resolution Reconstruction of DEMs
    Zheng, Xin
    Xu, Zhaoqi
    Yin, Qian
    Bao, Zelun
    Chen, Zhirui
    Wang, Sizhu
    REMOTE SENSING, 2024, 16 (19)
  • [48] Generative adversarial network in wavelet domain for single image super-resolution
    Zhang, Fan
    Wang, Xinwei
    Cao, Lin
    Du, Kangning
    Guo, Yanan
    Journal of Computers (Taiwan), 2021, 32 (03) : 249 - 262
  • [49] Terahertz image super-resolution restoration using a hybrid-Transformer-based generative adversarial network
    Wu, Heng
    Zheng, Jing
    He, Chunhua
    Xiao, Huapan
    Luo, Shaojuan
    OPTICS AND LASERS IN ENGINEERING, 2025, 189
  • [50] CSRGAN: MEDICAL IMAGE SUPER-RESOLUTION USING A GENERATIVE ADVERSARIAL NETWORK
    Zhu, Yongpei
    Zhou, Zicong
    Liao, Guojun
    Yuan, Kehong
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING WORKSHOPS (IEEE ISBI WORKSHOPS 2020), 2020,