NON-CONVEX GROUP SPARSITY: APPLICATION TO COLOR IMAGING

被引:10
|
作者
Majumdar, Angshul [1 ]
Ward, Rabab K. [1 ]
机构
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V5Z 1M9, Canada
关键词
group sparsity; color imaging; compressed sensing; VARIABLE SELECTION; REGRESSION; SHRINKAGE; LASSO;
D O I
10.1109/ICASSP.2010.5495703
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This work investigates a group-sparse solution to the under-determined system of linear equations b=Ax where the unknown x is formed of a group of vectors xi's. A group-sparse solution has only a few xi vectors as non-zeroes while the rest are zeroes. To seek a group-sparse solution generally a convex optimization problem is solved. Such an optimization criterion is unsuitable when the system is highly under-determined or when some of the vector xi's are themselves sparse. For such cases, we propose an alternate non-convex optimization problem. Simulation results show that the proposed method yields significantly improved results (2 orders of magnitude) over the standard method. We also apply the proposed group-sparse optimization in a novel fashion to the problem of color imaging. The new method shows an improvement of more than 1dB over the standard method.
引用
收藏
页码:469 / 472
页数:4
相关论文
共 50 条
  • [41] Compressive Sensing MRI Reconstruction with Shearlet Sparsity and non-Convex Hybrid Total Variation
    Dhengre, Nikhil
    Sinha, Saugata
    APPLIED MAGNETIC RESONANCE, 2022, 53 (11) : 1517 - 1525
  • [42] Construction of non-convex fuzzy sets and its application
    Hu, Dan
    Jiang, Tao
    Yu, Xianchuan
    NEUROCOMPUTING, 2020, 393 : 175 - 186
  • [43] Non-convex scenario optimization with application to system identification
    Campi, Marco C.
    Garatti, Simone
    Ramponi, Federico A.
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 4023 - 4028
  • [44] NON-CONVEX DUALITY
    EKELAND, I
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1979, MEM (60): : 45 - 55
  • [45] Fast Block Coordinate Descent for Non-Convex Group Regularizations
    Ida, Yasutoshi
    Kanai, Sekitoshi
    Kumagai, Atsutoshi
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206
  • [46] Convex non-convex image segmentation
    Raymond Chan
    Alessandro Lanza
    Serena Morigi
    Fiorella Sgallari
    Numerische Mathematik, 2018, 138 : 635 - 680
  • [47] Convex and Non-convex Flow Surfaces
    Bolchoun, A.
    Kolupaev, V. A.
    Altenbach, H.
    FORSCHUNG IM INGENIEURWESEN-ENGINEERING RESEARCH, 2011, 75 (02): : 73 - 92
  • [48] Comments on convex and non-convex figures
    Tietze, H
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1929, 160 (1/4): : 67 - 69
  • [49] Convex non-convex image segmentation
    Chan, Raymond
    Lanza, Alessandro
    Morigi, Serena
    Sgallari, Fiorella
    NUMERISCHE MATHEMATIK, 2018, 138 (03) : 635 - 680
  • [50] Voronoi coverage of non-convex environments with a group of networked robots
    Breitenmoser, Andreas
    Schwager, Mac
    Metzger, Jean-Claude
    Siegwart, Roland
    Rus, Daniela
    2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2010, : 4982 - 4989