机构:
Univ Milano Bicocca, Dept Stat & Quantitat Methods, Milan, Italy
Univ Milano Bicocca, CRISP Res Ctr, Milan, ItalyUniv Milano Bicocca, Dept Stat & Quantitat Methods, Milan, Italy
Boselli, Roberto
[1
,2
]
论文数: 引用数:
h-index:
机构:
Cesarini, Mirko
[1
,2
]
Mercorio, Fabio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Milano Bicocca, Dept Stat & Quantitat Methods, Milan, Italy
Univ Milano Bicocca, CRISP Res Ctr, Milan, ItalyUniv Milano Bicocca, Dept Stat & Quantitat Methods, Milan, Italy
Mercorio, Fabio
[1
,2
]
Mezzanzanica, Mario
论文数: 0引用数: 0
h-index: 0
机构:
Univ Milano Bicocca, Dept Stat & Quantitat Methods, Milan, Italy
Univ Milano Bicocca, CRISP Res Ctr, Milan, ItalyUniv Milano Bicocca, Dept Stat & Quantitat Methods, Milan, Italy
Mezzanzanica, Mario
[1
,2
]
机构:
[1] Univ Milano Bicocca, Dept Stat & Quantitat Methods, Milan, Italy
[2] Univ Milano Bicocca, CRISP Res Ctr, Milan, Italy
来源:
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2017, PT III
|
2017年
/
10536卷
关键词:
AI planning;
Data quality;
Data cleaning;
ETL;
CHECKING;
D O I:
10.1007/978-3-319-71273-4_29
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Data Cleaning represents a crucial and error prone activity in KDD that might have unpredictable effects on data analytics, affecting the believability of the whole KDD process. In this paper we describe how a bridge between AI Planning and Data Quality communities has been made, by expressing both the data quality and cleaning tasks in terms of AI planning. We also report a real-life application of our approach.