Production of hydrogen-rich gas from waste rigid polyurethane foam via catalytic steam gasification

被引:16
|
作者
Guo, Xiaoya [1 ]
Song, Zijuan [1 ]
Zhang, Wei [1 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, 333 Nanchen Rd, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Waste polyurethane foam; hydrogen-rich gas; gasification; steam; SPSS; HYDROTHERMAL GASIFICATION; AIR GASIFICATION; BIOMASS; TAR; PYROLYSIS; ADDITIVES; GASIFIER; REMOVAL;
D O I
10.1177/0734242X19899710
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Catalytic steam gasification of waste rigid polyurethane foam, in the fixed-bed reactor, was performed to produce hydrogen-rich gas. The influence of nine kinds of additives on the yield of products (gaseous, solid and liquid product) and the volume fraction of hydrogen was investigated. Among the additives, calcium carbonate, as the catalyst, could effectively enhance the gas yield and the volume fraction of hydrogen. A three-factor three-level completely randomised factorial (3 x 3 x 3) design, with calcium carbonate as the catalyst, was applied to investigate the influence of experimental conditions (temperature, steam flowrate and catalyst dosage) on the volume fraction of gaseous product components. The data were processed with SPSS statistical software. The result showed that the main effects of one variable, the interactive effects between two factors and the interactive effects among three factors all have statistical high significance. The best catalysed process is realised when calcium carbonate is the catalyst, gasification temperature is 1100 degrees C, steam flowrate is 0.7 kg h(-1), catalyst dosage is 10 wt% of waste rigid polyurethane foam. Under this condition, the volume fraction of hydrogen reaches up to 79.85%.
引用
收藏
页码:802 / 811
页数:10
相关论文
共 50 条
  • [1] Preparation of hydrogen-rich gas from waste polyurethane foam by steam gasification and catalytic reforming in a two-stage fixed bed reactor
    Guo, Xiaoya
    Li, Na
    Zhang, Ting
    JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2021, 23 (05) : 1955 - 1963
  • [2] Catalytic steam gasification of pig compost for hydrogen-rich gas production in a fixed bed reactor
    Wang, Jingbo
    Xiao, Bo
    Liu, Shiming
    Hu, Zhiquan
    He, Piwen
    Guo, Dabin
    Hu, Mian
    Qi, Fangjie
    Luo, Siyi
    BIORESOURCE TECHNOLOGY, 2013, 133 : 127 - 133
  • [3] Hydrogen-rich gas production by steam gasification of hydrochar derived from sewage sludge
    Gai, Chao
    Guo, Yanchuan
    Liu, Tingting
    Peng, Nana
    Liu, Zhengang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (05) : 3363 - 3372
  • [4] Steam Gasification of Catalytic Pyrolysis Char for Hydrogen-rich Gas Production
    Sun, Wu-xing
    Zhou, Yan
    Wang, Qi
    Wang, Shu-rong
    ENERGY ENGINEERING AND ENVIRONMENTAL ENGINEERING, PTS 1AND 2, 2013, 316-317 : 105 - +
  • [5] Effect of bioleaching on hydrogen-rich gas production by steam gasification of sewage sludge
    Li, Hanhui
    Chen, Zhihua
    Huo, Chan
    Hu, Mian
    Guo, Dabin
    Xiao, Bo
    ENERGY CONVERSION AND MANAGEMENT, 2015, 106 : 1212 - 1218
  • [6] Hydrogen-Rich Syngas Production from Waste Textile Gasification Coupling with Catalytic Reforming under Steam Atmosphere
    Zhuang, Xinchao
    Zhu, Nengwu
    Li, Fei
    Lin, Haisheng
    Liang, Chao
    Dang, Zhi
    Zou, Yuquan
    PROCESSES, 2024, 12 (09)
  • [7] Biomass steam gasification for hydrogen-rich gas production in a decoupled dual loop gasification system
    Xiao, Yahui
    Xu, Shaoping
    Song, Yangbo
    Shan, Yiyuan
    Wang, Chao
    Wang, Guangyong
    FUEL PROCESSING TECHNOLOGY, 2017, 165 : 54 - 61
  • [8] Hydrogen-rich gas production from catalytic steam gasification of biomass in a decoupled dual loop gasification system
    Xiao, Ya-Hui
    Liu, Yong
    Qiao, Cong-Zhen
    Xu, Shao-Ping
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2019, 47 (12): : 1430 - 1439
  • [9] Hydrogen rich gas production from catalytic gasification of biomass
    Hamad, Mohamed A.
    Radwan, Aly M.
    Heggo, Dalia A.
    Moustafa, Tarek
    RENEWABLE ENERGY, 2016, 85 : 1290 - 1300