Simplicial complexes and tilting theory for Brauer tree algebras

被引:9
|
作者
Asashiba, Hideto [1 ]
Mizuno, Yuya [2 ]
Nakashima, Ken [1 ]
机构
[1] Shizuoka Univ, Fac Sci, Dept Math, Suruya Ku, 836 Ohya, Shizuoka 4228529, Japan
[2] Osaka Prefecture Univ, Fac Liberal Arts & Sci, Naka Ku, 1-1 Gakuen Cho, Sakai, Osaka 5998531, Japan
关键词
Brauer tree algebras; 2-term tilting complexes; Simplicial complexes; Derived invariants; POLYTOPES; MODULES;
D O I
10.1016/j.jalgebra.2019.12.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study 2-term tilting complexes of Brauer tree algebras in terms of simplicial complexes. We show the symmetry and convexity of the lattice polytope corresponding to the simplicial complex of 2-term tilting complexes. Via a geometric interpretation of derived equivalences, we show that the f-vector of the simplicial complexes of Brauer tree algebras only depends on the number of the edges of the Brauer trees and hence it is a derived invariant. In particular, this result implies that the number of 2-term tilting complexes, which is in bijection with support tau-tilting modules, is a derived invariant. Moreover, we apply our result to the enumeration problem of Coxeter-biCatalan combinatorics. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:119 / 153
页数:35
相关论文
共 50 条
  • [31] τ-Tilting Finite Algebras, Bricks, and -Vectors
    Demonet, Laurent
    Iyama, Osamu
    Jasso, Gustavo
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (03) : 852 - 892
  • [32] Cellularity of endomorphism algebras of tilting objects
    Bellamy, Gwyn
    Thiel, Ulrich
    ADVANCES IN MATHEMATICS, 2022, 404
  • [33] Cubical simplicial algebras and related crossed structures
    Alansal, Ozgun Gurmen
    FILOMAT, 2024, 38 (09) : 3121 - 3135
  • [34] Strongly tilting truncated path algebras
    Dugas, A.
    Huisgen-Zimmermann, B.
    MANUSCRIPTA MATHEMATICA, 2011, 134 (1-2) : 225 - 257
  • [35] Simplicial complexes and complex systems
    Salnikov, Vsevolod
    Cassese, Daniele
    Lambiotte, Renaud
    EUROPEAN JOURNAL OF PHYSICS, 2019, 40 (01)
  • [36] Generalizing Homophily to Simplicial Complexes
    Sarker, Arnab
    Northrup, Natalie
    Jadbabaie, Ali
    COMPLEX NETWORKS AND THEIR APPLICATIONS XI, COMPLEX NETWORKS 2022, VOL 2, 2023, 1078 : 311 - 323
  • [37] Epidemics on multilayer simplicial complexes
    Fan, Junfeng
    Yin, Qian
    Xia, Chengyi
    Perc, Matjaz
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2261):
  • [38] Quantum walks on simplicial complexes
    Kaname Matsue
    Osamu Ogurisu
    Etsuo Segawa
    Quantum Information Processing, 2016, 15 : 1865 - 1896
  • [39] ON PARTIAL TILTING COMPLEXES
    Koga, Hirotaka
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (07) : 2417 - 2429
  • [40] Electronic implementation of simplicial complexes
    Vera-Avila, V. P.
    Rivera-Duron, R. R.
    Soriano-Garcia, Miguel S.
    Sevilla-Escoboza, R.
    Buldu, Javier M.
    CHAOS SOLITONS & FRACTALS, 2024, 183