Deep Learning at the Edge: Automatic Modulation Classification on Real World Signals

被引:0
|
作者
MacDonald, Shane [1 ,3 ]
Torlay, Lucas [2 ,3 ]
Baker, Hyatt [4 ]
机构
[1] Univ Minnesota, Minneapolis, MN USA
[2] Clemson Univ, Clemson, SC USA
[3] Infoscitex Summer Internship Program, Dayton, OH USA
[4] Multidomain Sensing Auton Effects Anal & Decis Sc, Air Force Res Lab, Wright Patterson AFB, OH 45433 USA
来源
ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS III | 2021年 / 11746卷
关键词
automated modulation classification; deep learning; radio frequency; MCNET; DEEPSIG; ESCAPE; transfer learning; edge processing; multi-domain; autonomy;
D O I
10.1117/12.2585787
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present an end-to-end pipeline for deep learning applied to Automatic Modulation Classification (AMC). We begin by utilizing Modulation Classification Network (MCNET), a recently published cost-efficient convolutional neural network (CNN) with skip connections. Model efficacy is confirmed and the algorithm is advanced with hyper parameter and regularization adjustments, transfer learned with an augmented over-the-air data set, and then a computationally superior version is deployed to an edge device. The model is initially trained with the well-known 2018 DEEPSIG data set that includes 24 modulation schemes. Transfer learning utilizes the Experiments, Scenarios, Concept of Operations, and Prototype Engineering (ESCAPE) data set. The edge node device utilized, but is not limited to, an NVIDIA Jetson AGX XAVIER. Under ideal conditions, classification at the edge node resulted in 96% accuracy with 11 over-the-air modulation schemes. Inferences at the edge were up to 13 times faster than the non-optimized model.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Joint Signal Detection and Automatic Modulation Classification via Deep Learning
    Xing, Huijun
    Zhang, Xuhui
    Chang, Shuo
    Ren, Jinke
    Zhang, Zixun
    Xu, Jie
    Cui, Shuguang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (11) : 17129 - 17142
  • [22] Automatic Modulation Classification Based on Deep Learning for Unmanned Aerial Vehicles
    Zhang, Duona
    Ding, Wenrui
    Zhang, Baochang
    Xie, Chunyu
    Li, Hongguang
    Liu, Chunhui
    Han, Jungong
    SENSORS, 2018, 18 (03)
  • [23] Multimodal attention-based deep learning for automatic modulation classification
    Han, Jia
    Yu, Zhiyong
    Yang, Jian
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [24] Automatic Modulation Classification Using Induced Class Hierarchies and Deep Learning
    Odemuyiwa, Toluwanimi
    Sirkeci-Mergen, Birsen
    ADVANCES IN INFORMATION AND COMMUNICATION, VOL 2, 2020, 1130 : 752 - 769
  • [25] Modulation Classification of MQAM Signals Based on Gradient Color Constellation and Deep Learning
    Huang, Gang
    Li, Yue
    Zhu, Qianqian
    He, Chengguang
    IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 1309 - 1313
  • [26] Deep Learning-based Automatic Modulation Classification for Wireless OFDM Communications
    Huynh-The, Thien
    Pham, Quoc-Viet
    Nguyen, Toan-Van
    Pham, Xuan-Qui
    Kim, Dong-Seong
    12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 47 - 49
  • [27] Multitask-Learning-Based Deep Neural Network for Automatic Modulation Classification
    Chang, Shuo
    Huang, Sai
    Zhang, Ruiyun
    Feng, Zhiyong
    Liu, Liang
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (03) : 2192 - 2206
  • [28] A lightweight deep learning architecture for automatic modulation classification of wireless internet of things
    Han, Jia
    Yu, Zhiyong
    Yang, Jian
    IET COMMUNICATIONS, 2024, 18 (18) : 1220 - 1230
  • [29] Deep Learning Based Automatic Modulation Classification in the Case of Carrier Phase Shift
    Yilmaz, Ramazan
    Pusane, Ali Emre
    2020 43RD INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2020, : 354 - 357
  • [30] A Noise-aware Deep Learning Model for Automatic Modulation Recognition in Radar Signals
    Aslinezhad, M.
    Sezavar, A.
    Malekijavan, A.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2023, 36 (08): : 1459 - 1467