Deep Learning at the Edge: Automatic Modulation Classification on Real World Signals

被引:0
|
作者
MacDonald, Shane [1 ,3 ]
Torlay, Lucas [2 ,3 ]
Baker, Hyatt [4 ]
机构
[1] Univ Minnesota, Minneapolis, MN USA
[2] Clemson Univ, Clemson, SC USA
[3] Infoscitex Summer Internship Program, Dayton, OH USA
[4] Multidomain Sensing Auton Effects Anal & Decis Sc, Air Force Res Lab, Wright Patterson AFB, OH 45433 USA
关键词
automated modulation classification; deep learning; radio frequency; MCNET; DEEPSIG; ESCAPE; transfer learning; edge processing; multi-domain; autonomy;
D O I
10.1117/12.2585787
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present an end-to-end pipeline for deep learning applied to Automatic Modulation Classification (AMC). We begin by utilizing Modulation Classification Network (MCNET), a recently published cost-efficient convolutional neural network (CNN) with skip connections. Model efficacy is confirmed and the algorithm is advanced with hyper parameter and regularization adjustments, transfer learned with an augmented over-the-air data set, and then a computationally superior version is deployed to an edge device. The model is initially trained with the well-known 2018 DEEPSIG data set that includes 24 modulation schemes. Transfer learning utilizes the Experiments, Scenarios, Concept of Operations, and Prototype Engineering (ESCAPE) data set. The edge node device utilized, but is not limited to, an NVIDIA Jetson AGX XAVIER. Under ideal conditions, classification at the edge node resulted in 96% accuracy with 11 over-the-air modulation schemes. Inferences at the edge were up to 13 times faster than the non-optimized model.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Automatic Modulation Classification of Cochannel Signals using Deep Learning
    Sun, Jiajun
    Wang, Guohua
    Lin, Zhiping
    Razul, Sirajudeen Gulam
    Lai, Xiaoping
    2018 IEEE 23RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2018,
  • [2] Automatic Modulation Classification in Deep Learning
    Alnajjar, Khawla A.
    Ghunaim, Sara
    Ansari, Sam
    2022 5TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS, SIGNAL PROCESSING, AND THEIR APPLICATIONS (ICCSPA), 2022,
  • [3] Deep Learning for Automatic Electroencephalographic Signals Classification
    Sanchez-Pozo, Nadia N.
    Lascano-Rivera, Samuel
    Montalvo-Marquez, Francisco J.
    Ortiz-Reinoso, Dalia Y.
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING, IWBBIO 2023, PT I, 2023, 13919 : 259 - 271
  • [4] Deep Learning based Automatic Modulation Classification Exploiting the Frequency and Spatiotemporal Domain of Signals
    Li, Bingyang
    Wang, Wen
    Zhang, Xiaofei
    Zhang, Meng
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [5] Edge-Efficient Deep Learning Models for Automatic Modulation Classification: A Performance Analysis
    Baishya, Nayan Moni
    Manoj, B. R.
    Bora, Prabin K.
    2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024, 2024,
  • [6] Distributed Learning for Automatic Modulation Classification in Edge Devices
    Wang, Yu
    Guo, Liang
    Zhao, Yu
    Yang, Jie
    Adebisi, Bamidele
    Gacanin, Haris
    Gui, Guan
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (12) : 2177 - 2181
  • [7] Automatic classification of EEG signals via deep learning
    Wu, Tao
    Kong, Xiangzeng
    Wang, Yiwen
    Yang, Xue
    Liu, Jingxuan
    Qi, Jun
    2021 IEEE 19TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2021,
  • [8] A deep learning method based on convolutional neural network for automatic modulation classification of wireless signals
    Yu Xu
    Dezhi Li
    Zhenyong Wang
    Qing Guo
    Wei Xiang
    Wireless Networks, 2019, 25 : 3735 - 3746
  • [9] A Reference Signal-Aided Deep Learning Approach for Overlapped Signals Automatic Modulation Classification
    Zhang, Rui
    Zhao, Yanlong
    Yin, Zhendong
    Li, Dasen
    Wu, Zhilu
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (04) : 1135 - 1139
  • [10] Deep-Learning Hopping Capture Model for Automatic Modulation Classification of Wireless Communication Signals
    Li, Lin
    Dong, Zhiyuan
    Zhu, Zhigang
    Jiang, Qingtang
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (02) : 772 - 783