Tailored interfacial crystal facets for efficient CH3NH3PbI3 perovskite solar cells

被引:5
作者
Zhu, Weidong [1 ]
Wang, Qian [1 ]
Chai, Weming [1 ]
Chen, Dandan [2 ]
Chen, Dazheng [1 ]
Chang, Jingjing [1 ]
Zhang, Jincheng [1 ]
Zhang, Chunfu [1 ]
Hao, Yue [1 ]
机构
[1] Xidian Univ, Sch Microelect, State Key Discipline Lab Wide Band Gap Semicond T, Xian 710071, Shanxi, Peoples R China
[2] Xian Shiyou Univ, Coll Sci, Xian 710065, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Perovskite solar cells; Interface engineering; Solution-mediated secondary growth; Crystal facets; Carrier dynamics; LEAD HALIDE PEROVSKITES; PROGRESS; IMPACT;
D O I
10.1016/j.orgel.2019.105598
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Interface engineering is generally requisite for highly efficient perovskite solar cells (PSCs). However, the current interface engineering methods inevitably introduce extra modifier layers into PSCs, which not only complex the configurations and fabrication procedures, but also increase the production cost of PSCs. Herein, we propose an interface engineering strategy for PSCs by controlling the nature of Lead halide perovskite films, and specifically their interfacial grain facets. In detail, a solution-mediated secondary growth (SSG) technology is demonstrated to tailor interfacial grain facets in CH3NH3PbI3 PSC. The precise tailoring ability of interfacial grain facets is achieved by controlling SSG temperature. When it is optimized to 60 degrees C, interfacial grains of CH3NH3PbI3 film can be fully transform from dodecahedral-shaped ones enclosed by (100) and (112) facets to the cubic-shaped ones enclosed by (110) and (002) facets, while maintaining the film's crystalline phase and composition. More importantly, such transitions are accompanied by significantly improved average PCE from 16.51 +/- 0.64% to 18.40 +/- 0.67% for the optimized CH3NH3PbI3 PSCs, benefiting from the greatly suppressed recombination and enhanced extraction of carriers.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Fabrication and characterization of perovskite (CH3NH3PbI3) solar cells
    Mishra, Amrit Kumar
    Shukla, R. K.
    SN APPLIED SCIENCES, 2020, 2 (03):
  • [2] Theoretical Treatment of CH3NH3PbI3 Perovskite Solar Cells
    Yun, Sining
    Zhou, Xiao
    Even, Jacky
    Hagfeldt, Anders
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (50) : 15806 - 15817
  • [3] The Effect of Solvents on the Performance of CH3NH3PbI3 Perovskite Solar Cells
    Huang, Pao-Hsun
    Wang, Yeong-Her
    Ke, Jhong-Ciao
    Huang, Chien-Jung
    ENERGIES, 2017, 10 (05):
  • [4] CH3NH3PbI3 crystal orientation and photovoltaic performance of planar heterojunction perovskite solar cells
    Bae, Seunghwan
    Park, Joon-Suh
    Han, Il Ki
    Shin, Tae Joo
    Jo, Won Ho
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 160 : 77 - 84
  • [5] Role of Water in Suppressing Recombination Pathways in CH3NH3PbI3 Perovskite Solar Cells
    Solanki, Ankur
    Lim, Swee Sien
    Mhaisalkar, Subodh
    Sum, Tze Chien
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (28) : 25474 - 25482
  • [6] Nickel oxide incorporated CH3NH3PbI3 for stable and efficient planar perovskite solar cells
    Arjun, V
    Muthukumaran, K. P.
    Nithya, A.
    Yoshimura, M.
    Karuppuchamy, S.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2024, 271
  • [7] Improvement of CH3NH3PbI3 Formation for Efficient and Better Reproducible Mesoscopic Perovskite Solar Cells
    Jiang, Changyun
    Lim, Siew Lay
    Goh, Wei Peng
    Wei, Feng Xia
    Zhang, Jie
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (44) : 24726 - 24732
  • [8] Fabrication of Efficient CH3NH3PbI3 Solar Cells in Ambient Air
    Wang, Feng
    Ye, Zhongbiao
    Sarvari, Hojjatollah
    Park, Somin
    Graham, Kenneth
    Zhao, Yuetao
    Chen, Zhi David
    2017 IEEE 44TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2017, : 1044 - 1047
  • [9] Hysteresis dependence on CH3NH3PbI3 deposition method in perovskite solar cells
    Fernandes, Silvia Leticia
    Bregadiolli, Bruna Andressa
    Veron, Anna Christina
    Miesch, Frank A.
    Zaghete, Maria Aparecida
    de Oliveira Graeff, Carlos Frederico
    THIN FILMS FOR SOLAR AND ENERGY TECHNOLOGY VIII, 2016, 9936
  • [10] Degradation behavior of planar heterojunction CH3NH3PbI3 perovskite solar cells
    Wang, Chunhua
    Zhang, Chujun
    Huang, Yulan
    Tong, Sichao
    Wu, Han
    Zhang, Jian
    Gao, Yongli
    Yang, Junliang
    SYNTHETIC METALS, 2017, 227 : 43 - 51