Survival analysis of microarray expression data by transformation models

被引:9
作者
Xu, JF [1 ]
Yang, YN
Ott, J
机构
[1] Columbia Univ, Dept Stat, New York, NY 10027 USA
[2] Rockefeller Univ, Lab Stat Genet, New York, NY 10021 USA
[3] Univ Sci & Technol China, Dept Stat & Finance, Anhua 230026, Peoples R China
关键词
microarray; proportional hazards model; transformation models;
D O I
10.1016/j.compbiolchem.2005.02.001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many microarray experiments involve examining the time elapsed prior to the occurrence of a specific event. One purpose of these studies is to relate the gene expressions to the survival times. The Cox proportional hazards model has been the major tool for analyzing such data. The transformation model provides a viable alternative to the classical Cox's model. We investigate the use of transformation models in microarray survival data in this paper. The transformation model, which can be viewed as a generalization of proportional hazards model and the proportional odds model, is more robust than the proportional hazards model, because it is not susceptible to erroneous results for cases when the assumption of proportional hazards is violated. We analyze a gene expression dataset from Beer et al. [Beer, D.G., Kardia, S.L., Huang, C.C., Giordano, T.J., Levin, A.M., Misek, D.E., Lin, L., Chen, G., Gharib, T.G., Thomas, D.G., Lizyness, M.L., Kuick, R., Hayasaka, S., Taylor, J.M., lannettoni, M.D., Orringer, M.B., Hanash, S., 2002. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med. 8 (8), 816-824] and show that the transformation model provides higher prediction precision than the proportional hazards model. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:91 / 94
页数:4
相关论文
共 13 条
  • [1] Gene-expression profiles predict survival of patients with lung adenocarcinoma
    Beer, DG
    Kardia, SLR
    Huang, CC
    Giordano, TJ
    Levin, AM
    Misek, DE
    Lin, L
    Chen, GA
    Gharib, TG
    Thomas, DG
    Lizyness, ML
    Kuick, R
    Hayasaka, S
    Taylor, JMG
    Iannettoni, MD
    Orringer, MB
    Hanash, S
    [J]. NATURE MEDICINE, 2002, 8 (08) : 816 - 824
  • [2] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [3] Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
    Bhattacharjee, A
    Richards, WG
    Staunton, J
    Li, C
    Monti, S
    Vasa, P
    Ladd, C
    Beheshti, J
    Bueno, R
    Gillette, M
    Loda, M
    Weber, G
    Mark, EJ
    Lander, ES
    Wong, W
    Johnson, BE
    Golub, TR
    Sugarbaker, DJ
    Meyerson, M
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (24) : 13790 - 13795
  • [4] AN ANALYSIS OF TRANSFORMATIONS
    BOX, GEP
    COX, DR
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1964, 26 (02) : 211 - 252
  • [5] Semiparametric analysis of transformation models with censored data
    Chen, KN
    Jin, ZZ
    Ying, ZL
    [J]. BIOMETRIKA, 2002, 89 (03) : 659 - 668
  • [6] Predicting survival probabilities with semiparametric transformation models
    Cheng, SC
    Wei, LJ
    Ying, Z
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (437) : 227 - 235
  • [7] Cheng SC, 1995, BIOMETRIKA, V82, P835, DOI 10.1093/biomet/82.4.835
  • [8] CLAYTON DG, 1986, P INT STAT I INT STA
  • [9] DABROWSKA DM, 1988, SCAND J STAT, V15, P1
  • [10] Diversity of gene expression in adenocarcinoma of the lung
    Garber, ME
    Troyanskaya, OG
    Schluens, K
    Petersen, S
    Thaesler, Z
    Pacyna-Gengelbach, M
    van de Rijn, M
    Rosen, GD
    Perou, CM
    Whyte, RI
    Altman, RB
    Brown, PO
    Botstein, D
    Petersen, I
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (24) : 13784 - 13789