Tight subgroups in torsion-free abelian groups

被引:0
作者
Ould-Beddi, MA
Strüngmann, L
机构
[1] Univ Nouakchott, Fac Sci & Tech, Nouakchott, Mauritania
[2] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
关键词
D O I
10.1007/BF02776060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a torsion-free abelian group. We study the class of all completely decomposable subgroups of X which are maximal with respect to inclusion. These groups are called tight subgroups of X and we state sufficient conditions on a subgroup to be tight. In particular we consider tight subgroups of bounded completely decomposable groups. For those we show that every regulating subgroup is tight and we characterize the tight subgroups of finite index in almost completely decomposable groups.
引用
收藏
页码:251 / 268
页数:18
相关论文
共 50 条
  • [31] Direct Decompositions of Torsion-Free Abelian Groups
    E. Blagoveshchenskaya
    Lobachevskii Journal of Mathematics, 2020, 41 : 1640 - 1646
  • [32] ON TORSION-FREE ABELIAN K-GROUPS
    DUGAS, M
    RANGASWAMY, KM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 99 (03) : 403 - 408
  • [33] COBALANCED TORSION-FREE ABELIAN-GROUPS
    GOETERS, HP
    COMMUNICATIONS IN ALGEBRA, 1993, 21 (08) : 2715 - 2726
  • [34] JUMP DEGREES OF TORSION-FREE ABELIAN GROUPS
    Andersen, Brooke M.
    Kach, Asher M.
    Melnikov, Alexander G.
    Solomon, Reed
    JOURNAL OF SYMBOLIC LOGIC, 2012, 77 (04) : 1067 - 1100
  • [35] PURE SUBGROUPS OF TORSION-FREE COTORSION GROUPS
    VANLEEUW.LC
    ACTA SCIENTIARUM MATHEMATICARUM, 1973, 35 : 95 - 106
  • [36] Classification of a class of torsion-free abelian groups
    Solak, Ebru
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2016, 135 : 111 - 131
  • [37] TORSION-FREE ABELIAN CS-GROUPS
    CHEKHLOV, AR
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1990, (03): : 84 - 87
  • [38] Separable torsion-free abelian E*-groups
    Lubimcev, O
    Sebeldin, A
    Vinsonhaler, C
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 133 (1-2) : 203 - 208
  • [39] Torsion-free abelian groups are Borel complete
    Paolini, Gianluca
    Shelah, Saharon
    ANNALS OF MATHEMATICS, 2024, 199 (03) : 1177 - 1224
  • [40] Direct Decompositions of Torsion-Free Abelian Groups
    Blagoveshchenskaya, E.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (09) : 1640 - 1646