Maximal sets of triangle-factors on v = 6m+3 vertices

被引:0
作者
Rees, RS [1 ]
机构
[1] Mem Univ Newfoundland, Dept Math & Stat, St Johns, NF A1C 5S7, Canada
关键词
graphs; group-divisible designs; frame-resolvability;
D O I
10.1002/(SICI)1520-6610(1998)6:5<309::AID-JCD1>3.0.CO;2-J
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the necessary condition m + 1 less than or equal to k less than or equal to 3m + 1 that there exist a maximal set of k triangle-factors on 6m + 3 greater than or equal to 15 vertices is also sufficient, except possibly when k = m + 1, or when 6m + 3 is an element of{45, 57, 69, 81, 93, 237, 261, 309, 333, 381}. (C) 1998 John Wiley & Sons, Inc.
引用
收藏
页码:309 / 323
页数:15
相关论文
共 13 条
  • [1] RESOLVABLE GROUP DIVISIBLE DESIGNS WITH BLOCK SIZE 3
    ASSAF, AM
    HARTMAN, A
    [J]. DISCRETE MATHEMATICS, 1989, 77 (1-3) : 5 - 20
  • [2] GROUP DIVISIBLE DESIGNS WITH BLOCK-SIZE 4
    BROUWER, AE
    SCHRIJVER, A
    HANANI, H
    [J]. DISCRETE MATHEMATICS, 1977, 20 (01) : 1 - 10
  • [3] BROUWER AE, 1978, UTILITAS MATHEMATICA, V13, P311
  • [4] Corradi K., 1963, Acta Math. Acad. Sci. Hungar, V14, P423
  • [5] REES R, 1987, ARS COMBINATORIA, V23, P107
  • [6] REES R, 1988, ARS COMBINATORIA, V26, P3
  • [7] ON COMBINATORIAL DESIGNS WITH SUBDESIGNS
    REES, R
    STINSON, DR
    [J]. DISCRETE MATHEMATICS, 1989, 77 (1-3) : 259 - 279
  • [8] REES R, 1988, ARS COMBINATORIA, V25, P125
  • [9] REES R, 1986, C NUMER, V55, P211
  • [10] REES R, IN PRESS J COMB DESI