Direct and inverse approximation theorems in the weighted Orlicz-type spaces with a variable exponent

被引:7
作者
Abdullayev, Fahreddin [1 ,2 ]
Chaichenko, Stanislav [3 ]
Imash Kyzy, Meerim [2 ]
Shidlich, Andrii [4 ]
机构
[1] Mersin Univ, Fac Arts & Sci, Mersin, Turkey
[2] Kyrgyz Turkish Manas Univ, Fac Sci, Bishkek, Kyrgyzstan
[3] Donbas State Pedag Univ, Fac Phys & Math, Sloviansk, Ukraine
[4] NAS Ukraine, Inst Math, Dept Theory Funct, Kiev, Ukraine
关键词
Best approximation; modulus of smoothness; direct approximation theorem; inverse approximation theorem; weighted space; Orlicz-type spaces; K-functionals; GENERALIZED LEBESGUE SPACES; TRIGONOMETRIC APPROXIMATION;
D O I
10.3906/mat-1911-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In weighted Orlicz-type spaces S-p,S- (mu) with a variable summation exponent, the direct and inverse approximation theorems are proved in terms of best approximations of functions and moduli of smoothness of fractional order. It is shown that the constant obtained in the inverse approximation theorem is the best in a certain sense. Some applications of the results are also proposed. In particular, the constructive characteristics of functional classes defined by such moduli of smoothness are given. Equivalence between moduli of smoothness and certain Peetre K-functionals is shown in the spaces S-p,S- (mu).
引用
收藏
页码:284 / 299
页数:16
相关论文
共 31 条
[1]   TRIGONOMETRIC APPROXIMATION OF FUNCTIONS IN GENERALIZED LEBESGUE SPACES WITH VARIABLE EXPONENT [J].
Akgun, R. .
UKRAINIAN MATHEMATICAL JOURNAL, 2011, 63 (01) :1-26
[2]   The refined direct and converse inequalities of trigonometric approximation in weighted variable exponent Lebesgue spaces [J].
Akgun, Ramazan ;
Kokilashvili, Vakhtang .
GEORGIAN MATHEMATICAL JOURNAL, 2011, 18 (03) :399-423
[3]  
Akhiezer J., 1956, Theory of Approximation
[4]  
Bari N.K., 1956, Trudy Mosk. Mat. Obshch., V5, P483
[5]  
Butzer P.L., 1975, Lecture Notes in Math, V457, P116
[6]  
Butzer Paul L., 1971, Fourier analysis and approximation
[7]   Best approximations of periodic functions in generalized lebesgue spaces [J].
Chaichenko, S. O. .
UKRAINIAN MATHEMATICAL JOURNAL, 2013, 64 (09) :1421-1439
[8]   DIRECT AND INVERSE APPROXIMATION THEOREMS OF FUNCTIONS IN THE ORLICZ TYPE SPACES SM [J].
Chaichenko, Stanislav ;
Shidlich, Andrii ;
Abdullayev, Fahreddin .
MATHEMATICA SLOVACA, 2019, 69 (06) :1367-1380
[9]  
DeVore Ronald A., 1993, Constructive Approximation
[10]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+