Non-ergodic maps in the tangent family

被引:9
|
作者
Skorulski, B [1 ]
机构
[1] Warsaw Univ Technol, Fac Math & Informat Sci, PL-00661 Warsaw, Poland
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2003年 / 14卷 / 01期
关键词
D O I
10.1016/S0019-3577(03)90074-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider maps in the tangent family for which the asymptotic values are eventually mapped onto poles. For such functions the Julia set J(f) = (C) over bar. We prove that for almost all z is an element of J(f) the limit set W(z) is the post-singular set and f is non-ergodic on J(f). We also prove that for such f does not exist a f-invariant measure absolutely continuous with respect to the Lebesgue measure finite on compact subsets of C.
引用
收藏
页码:103 / 118
页数:16
相关论文
共 50 条
  • [41] A statistical evaluation of non-ergodic variogram estimators
    Curriero, FC
    Hohn, ME
    Liebhold, AM
    Lele, SR
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2002, 9 (01) : 89 - 110
  • [42] A statistical evaluation of non-ergodic variogram estimators
    Frank C. Curriero
    Michael E. Hohn
    Andrew M. Liebhold
    Subhash R. Lele
    Environmental and Ecological Statistics, 2002, 9 : 89 - 110
  • [43] Non-ergodic transport of kinetically sorbing solutes
    Fiori, A
    Bellin, A
    JOURNAL OF CONTAMINANT HYDROLOGY, 1999, 40 (03) : 201 - 219
  • [44] LYAPUNOV EXPONENTS FOR NON-ERGODIC MEROMORPHIC FUNCTIONS
    Kotus, Janina
    Balderas, Marco Montes De Oca
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 1609 - 1620
  • [45] STRICTLY NON-ERGODIC ACTIONS ON HOMOGENEOUS SPACES
    DANI, SG
    DUKE MATHEMATICAL JOURNAL, 1980, 47 (03) : 633 - 639
  • [46] Multirelay Channel with Non-Ergodic Link Failures
    Simeone, Osvaldo
    Somekh, Oren
    Erkip, Elza
    Poor, H. Vincent
    Shamai , Shlomo
    ITW: 2009 IEEE INFORMATION THEORY WORKSHOP ON NETWORKING AND INFORMATION THEORY, 2009, : 52 - +
  • [47] Ergodic to non-ergodic transition monitored by scattered light intensity statistics
    Manno, M
    Bulone, D
    Martorana, V
    San Biagio, PL
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 40 - 54
  • [48] From ergodic to non-ergodic chaos in Rosenzweig-Porter model
    Pino, M.
    Tabanera, J.
    Serna, P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (47)
  • [49] On Non-ergodic Volterra Cubic Stochastic Operators
    Farrukh Mukhamedov
    Chin Hee Pah
    Azizi Rosli
    Qualitative Theory of Dynamical Systems, 2019, 18 : 1225 - 1235
  • [50] On a Class of Non-Ergodic Lotka–Volterra Operator
    C. H. Pah
    A. Rosli
    Lobachevskii Journal of Mathematics, 2022, 43 : 2591 - 2598