Non-ergodic maps in the tangent family

被引:9
|
作者
Skorulski, B [1 ]
机构
[1] Warsaw Univ Technol, Fac Math & Informat Sci, PL-00661 Warsaw, Poland
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2003年 / 14卷 / 01期
关键词
D O I
10.1016/S0019-3577(03)90074-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider maps in the tangent family for which the asymptotic values are eventually mapped onto poles. For such functions the Julia set J(f) = (C) over bar. We prove that for almost all z is an element of J(f) the limit set W(z) is the post-singular set and f is non-ergodic on J(f). We also prove that for such f does not exist a f-invariant measure absolutely continuous with respect to the Lebesgue measure finite on compact subsets of C.
引用
收藏
页码:103 / 118
页数:16
相关论文
共 50 条
  • [31] Ergodic and non-ergodic phase transitions in globular protein suspensions
    Kulkarni, AM
    Dixit, NM
    Zukoski, CF
    FARADAY DISCUSSIONS, 2003, 123 : 37 - 50
  • [32] Ergodic observables in non-ergodic systems: The example of the harmonic chain
    Baldovin, Marco
    Marino, Raffaele
    Vulpiani, Angelo
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 630
  • [33] Ergodic and non-ergodic regimes in temporal laser speckle imaging
    Zakharov, Pavel
    OPTICS LETTERS, 2017, 42 (12) : 2299 - 2301
  • [34] Non-thermodynamic behavior for non-ergodic interactions
    Gaveau, B.
    Schulman, L. S.
    SECOND LAW OF THERMODYNAMICS: STATUS AND CHALLENGES, 2011, 1411
  • [35] NON-ERGODIC BANACH SPACES ARE NEAR HILBERT
    Cuellar Carrera, W.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (12) : 8691 - 8707
  • [36] On Non-Ergodic Transformations on S3
    Ganikhodjaev, Nasir N.
    Jamilov, Uygun U.
    Mukhitdinov, Ramazon T.
    INTERNATIONAL CONFERENCE ON ADVANCEMENT IN SCIENCE AND TECHNOLOGY 2012 (ICAST): CONTEMPORARY MATHEMATICS, MATHEMATICAL PHYSICS AND THEIR APPLICATIONS, 2013, 435
  • [37] On Non-Ergodic Gaussian Quadratic Stochastic Operators
    Hamzah, Nur Zatul Akmar
    Ganikhodjaev, Nasir
    PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): MATHEMATICAL SCIENCES AS THE CORE OF INTELLECTUAL EXCELLENCE, 2018, 1974
  • [38] CONVERGENCE OF NON-ERGODIC DYNAMICAL-SYSTEMS
    KALLENBERG, O
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 53 (03): : 329 - 351
  • [39] Non-ergodic delocalization in the Rosenzweig–Porter model
    Per von Soosten
    Simone Warzel
    Letters in Mathematical Physics, 2019, 109 : 905 - 922
  • [40] NON-ERGODIC DISSOCIATION OF THE ACETONE ENOL ION
    MCADOO, DJ
    HUDSON, CE
    INTERNATIONAL JOURNAL OF MASS SPECTROMETRY AND ION PROCESSES, 1984, 59 (01): : 77 - 83