WELDING EFFECTS ON THE MECHANICAL INTEGRITY OF A TRIP800 STEEL: A COMPARISON OF LASER CO2 AND GMAW PROCESSES

被引:1
|
作者
Perez-Medina, G. Y. [1 ]
Lopez, H. F. [2 ]
Reyes-Valdes, F. A. [1 ]
Garza-Gomez, A. [1 ]
Lopez-Ochoa, Luis M. [3 ]
机构
[1] Corp Mexicana Invest Mat Calle Ciencia & Tecnol, Saltillo, Coahuila, Mexico
[2] Univ Wisconsin, Dept Mat, Milwaukee, WI 53201 USA
[3] Univ La Rioja, Escuela Tecn Super Ingn Ind, Appl Thermodynam & Energy Grp Res, La Rioja, Spain
关键词
Laser; gmaw; retained austenite; color metallography;
D O I
10.2478/amm-2014-0243
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
In this work a strip of a transformation induced plasticity (TRIP) steel was welded using gas metal arc welding (GMAW) and Laser CO2 welding (LBW) processes and the resultant strength and ductility of the welded joints evaluated. It was found that LBW lead to relatively high hardness in the fusion zone, FZ where the resultant microstructure was predominantly martensite. The relative volume fractions of phases developed in the welded regions were quantitatively measured using color metallography combined with X-ray diffraction analyses. It was found that the heat affected zone, HAZ developed the maximum amount of martensite (up to 32%) in the steel welded using LBW besides a mixture of bainite, retained austenite and ferrite phases. In contrast, a relatively low percent of martensite (10.8%) was found in the HAZ when the GMAW process was implemented.
引用
收藏
页码:1427 / 1432
页数:6
相关论文
共 50 条
  • [31] Effects of Welding Speed on Microstructure and Mechanical Properties of CO2 Laser Welded Dissimilar Butt Joints between Low Carbon Steel and Austenitic Stainless Steel
    Prabakaran, M. P.
    Kannan, G. R.
    Pandiyarajan, R.
    ADVANCES IN MATERIALS AND PROCESSING TECHNOLOGIES, 2022, 8 : 1 - 12
  • [32] CO2 laser butt-welding of steel sandwich sheet composites
    Salonitis, Konstantinos
    Stavropoulos, Panagiotis
    Fysikopoulos, Apostolos
    Chryssolouris, George
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2013, 69 (1-4): : 245 - 256
  • [33] Analysis of mechanism of plasma and spatter in CO2 laser welding of galvanized steel
    Park, H
    Rhee, S
    OPTICS AND LASER TECHNOLOGY, 1999, 31 (02): : 119 - 126
  • [34] CO2 laser butt-welding of steel sandwich sheet composites
    Konstantinos Salonitis
    Panagiotis Stavropoulos
    Apostolos Fysikopoulos
    George Chryssolouris
    The International Journal of Advanced Manufacturing Technology, 2013, 69 : 245 - 256
  • [35] CO2 laser welding of galvanized steel sheets using vent holes
    Chen, Weichiat
    Ackerson, Paul
    Molian, Pal
    MATERIALS & DESIGN, 2009, 30 (02): : 245 - 251
  • [36] A three-modules sensor for CO2 laser welding and cutting processes
    Sforza, P
    deBlasiis, D
    Lombardo, V
    Santacesaria, V
    DellErba, M
    LASERS IN MATERIAL PROCESSING, 1997, 3097 : 97 - 107
  • [37] RESEARCH INTO EFFECTS OF TRANSIENT PROCESSES ON METAL SPATTER IN CO2 WELDING
    LEBEDEV, VK
    MEDVEDENKO, NF
    AUTOMATIC WELDING USSR, 1968, 21 (05): : 12 - +
  • [38] Comparison of melting efficiency in high power fiber laser and CO2 laser welding
    Zou, Jianglin
    Wu, Shikai
    Xiao, Rongshi
    Zhang, Xinyi
    Niu, Jianqiang
    Zhongguo Jiguang/Chinese Journal of Lasers, 2013, 40 (08):
  • [39] Weldability of STS304L butt joints by CO2 laser-GMAW hybrid welding
    Joo, S. M.
    Bang, H. S.
    Lee, Y. K.
    Bang, H. S.
    MATERIALS RESEARCH INNOVATIONS, 2014, 18 : 1067 - 1073
  • [40] Effects of welding positions on droplet transfer in CO2 laser–MAG hybrid welding
    Y. B. Chen
    J. C. Feng
    L. Q. Li
    Y. Li
    S. Chang
    The International Journal of Advanced Manufacturing Technology, 2013, 68 : 1351 - 1359