Thermodynamic Analysis of the Crystallization Resistance of the Ge-S-Bi Glasses

被引:4
|
作者
Balueva, K., V [1 ]
Plekhovich, A. D. [1 ]
Kut'in, A. M. [1 ]
Sukhanov, M., V [1 ]
机构
[1] Russian Acad Sci, Devyatykh Inst Chem High Pur Subst, Nizhnii Novgorod 603951, Russia
基金
俄罗斯基础研究基金会;
关键词
chalcogenide glass; Gibbs energy; associated solution; thermodynamic modeling; CHALCOGENIDE GLASSES; OPTICAL-PROPERTIES; INFRARED LUMINESCENCE; TRANSPORT;
D O I
10.1134/S0036023621080027
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Glass-forming systems based on GeSx have a wide practical application. Therefore, their crystallization from supercooled melt was studied in many works, mainly by differential scanning calorimetry and X-ray powder diffraction analysis. Explanation of the experimentally determined crystallization behavior using the thermodynamic method of Gibbs energy minimization enabled one to develop a predictive procedure for identifying the crystallizing phases and the temperature conditions of their separation, depending on the initial composition of the GeSxBi0.02 glass (x = 1.25, 1.35, 1.4, and 1.6), and also allowed one to formulate a thermodynamic factor of crystallization resistance of glass. Comparison of the Gibbs energy calculated using the associated solution model with the Gibbs energy values obtained experimentally in the supercooled solution region made it possible to find the standard enthalpy of formation for each glass composition. Finally, the supersaturation to crystallization, which is the basis of the thermodynamic factor of crystallization and is an index of the crystallization resistance of glass, is determined by the difference of the chemical potentials of a component of the glass-forming system in the crystalline state and in the supercooling solution state. The procedure to predict and choose crystallization-resistant glasses promotes technological developments of novel fiber optic light guides.
引用
收藏
页码:1153 / 1160
页数:8
相关论文
共 50 条
  • [1] Thermodynamic Analysis of the Crystallization Resistance of the Ge–S–Bi Glasses
    K. V. Balueva
    A. D. Plekhovich
    A. M. Kut’in
    M. V. Sukhanov
    Russian Journal of Inorganic Chemistry, 2021, 66 : 1153 - 1160
  • [2] Mechanical percolation and structural transition in Ge-S-Bi bulk glasses
    Saffarini, G
    Saiter, JM
    MATERIALS LETTERS, 2002, 57 (01) : 219 - 222
  • [3] N-TYPE CONDUCTION IN GLASSES OF THE GE-S-BI SYSTEM
    VIKHROV, SP
    AMPILOGOV, VN
    KENGERLINSKII, LY
    KHIMINETS, VV
    INORGANIC MATERIALS, 1984, 20 (09) : 1254 - 1256
  • [4] NATURE OF INVERSION OF THE TYPE OF CONDUCTION IN GE-SE-BI AND GE-S-BI GLASSY CHALCOGENIDE SEMICONDUCTORS
    VIKHROV, SP
    YUSHKA, G
    AMPILOGOV, VN
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1984, 18 (02): : 217 - 218
  • [5] Kinetic analysis of the crystallization processes in the glasses of the Bi–As–S system
    M. V. Šiljegović
    S. R. Lukić-Petrović
    G. R. Štrbac
    D. M. Petrović
    Journal of Thermal Analysis and Calorimetry, 2012, 110 : 379 - 384
  • [6] Crystallization Properties of Ge-Se-Bi Thermoelectric Glasses
    Shangguan, Fudiao
    Xie, Jun
    Wu, Zhiping
    Xing, Jinmei
    Zhao, Bing
    Liu, Yinyao
    Chen, Guorong
    GREEN BUILDING MATERIALS III, 2012, 509 : 235 - 239
  • [7] Thermodynamic model and viscosity of Ge–S glasses
    Jozef Chovanec
    Mária Chromčíková
    Marek Liška
    Jana Shánělová
    Jiří Málek
    Journal of Thermal Analysis and Calorimetry, 2014, 116 : 581 - 588
  • [8] Crystallization Resistance of Optically Active GeSx ⟨Bi⟩ Glasses
    Kut'in, A. M.
    Plekhovich, A. D.
    Sukhanov, M., V
    Balueva, K., V
    INORGANIC MATERIALS, 2019, 55 (10) : 1039 - 1045
  • [9] Crystallization Resistance of Optically Active GeSx〈Bi〉 Glasses
    A. M. Kut’in
    A. D. Plekhovich
    M. V. Sukhanov
    K. V. Balueva
    Inorganic Materials, 2019, 55 : 1039 - 1045
  • [10] Kinetic analysis of the crystallization processes in the glasses of the Bi-As-S system
    Siljegovic, M. V.
    Lukic-Petrovic, S. R.
    Strbac, G. R.
    Petrovic, D. M.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2012, 110 (01) : 379 - 384