Parameter identification of BLDC motor model via metaheuristic optimization techniques

被引:4
|
作者
Kumpanya, Danupon [1 ]
Thaiparnat, Sattarpoom [2 ]
Puangdownreong, Deacha [3 ]
机构
[1] Ragamangala Univ Technol Suvarnabhumi RUS, Fac Engn & Architecture, Suphanburi, Thailand
[2] RUS, Fac Business Adm & Informat Technol, Suphanburi, Thailand
[3] South East Asia Univ, Grad Sch, Dept Elect Engn, Bangkok, Thailand
来源
INDUSTRIAL ENGINEERING AND SERVICE SCIENCE 2015, IESS 2015 | 2015年 / 4卷
关键词
Parameter identification; bldc motor model; adaptive tabu search; intensified current search;
D O I
10.1016/j.promfg.2015.11.047
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The brushless dc (BLDC) motor has been increasingly used in industrial automation, automotive, aerospace, instrumentation and appliances. Analysis and design of the BLDC motor efficiently require its accurate model and parameters. In this paper, the parameter identification of the BLDC motor model via well-known metaheuristic optimization search techniques is proposed. Two trajectory-based methods, i.e. adaptive tabu search (ATS) and intensified current search (ICS) are employed to estimate the BLDC motor parameters. As simulation results of model identification and validation, both ATS and ICS can provide optimal BLDC model parameters. The BLDC models obtained show a very good agreement to actual system dynamics. However, the ICS can pro-vide optimal model parameters faster than the ATS. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:322 / 327
页数:6
相关论文
共 50 条
  • [41] Parameter identification and compensation of a friction model based on improved glowworm swarm optimization
    Gao B.
    Shen W.
    Dai Y.
    Ye Y.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (06): : 69 - 78
  • [42] Parameter identification of photovoltaic cell model based on improved grasshopper optimization algorithm
    Wu, Zhongqiang
    Shen, Dandan
    OPTIK, 2021, 247
  • [43] Optimization of material parameter identification in biomechanics
    Harb, N.
    Labed, N.
    Domaszewski, M.
    Peyraut, F.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2014, 49 (02) : 337 - 349
  • [44] Parameter identification of water quality model based on chaotic particle swarm optimization
    Yuan, Jun
    Chen, Bei
    Zhu, Guangcan
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2009, 39 (05): : 1018 - 1022
  • [45] Parameter Identification of Photovoltaic Cell Model Based on Enhanced Particle Swarm Optimization
    Wang, Rongjie
    SUSTAINABILITY, 2021, 13 (02) : 1 - 25
  • [46] SOFC model parameter identification by means of Modified African Vulture Optimization algorithm
    Bagal, Hamid Asadi
    Soltanabad, Yashar Nouri
    Dadjuo, Milad
    Wakil, Karzan
    Zare, Mansoureh
    Mohammed, Amin Salih
    ENERGY REPORTS, 2021, 7 : 7251 - 7260
  • [47] Multi-parameter identification of permanent magnet synchronous motor based on improved particle swarm optimization
    Liu X.-P.
    Hu W.-P.
    Zou Y.-L.
    Zhang Y.
    Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2020, 24 (07): : 112 - 120
  • [48] Kinetic Modeling and Parameters Identification Based on Metaheuristic Optimization Techniques for Extraction Process of Marrubium vulgare L. Essential Oil
    Rezazi, S.
    Hanini, S.
    Si-Moussa, C.
    Abdelmalek, S.
    JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2017, 19 (02): : 307 - 322
  • [49] Improved artificial fish swarm algorithm applied on the static model of the induction motor parameter identification
    Lv, Jingyong
    ADVANCES IN MANUFACTURING TECHNOLOGY, PTS 1-4, 2012, 220-223 : 753 - 761
  • [50] Model Reference Adaptive Control of Marine Permanent Magnet Propulsion Motor Based on Parameter Identification
    Huang, Yubo
    Zhang, Jundong
    Chen, Dong
    Qi, Jiahao
    ELECTRONICS, 2022, 11 (07)